StarTalk Radio - Einstein’s Crumbs with Janna Levin

Episode Date: April 29, 2025

How did Einstein’s work influence the world we know today? Neil deGrasse Tyson and  Harrison Greenbaum team up with astrophysicist Janna Levin, PhD, to explore Einstein’s physics and its resultin...g discoveries, from Walmart laser pointers to black holes and wormholes. NOTE: StarTalk+ Patrons can listen to this entire episode commercial-free here:https://startalkmedia.com/show/einsteins-crumbs-with-janna-levin/Thanks to our Patrons Vickie Patik, Chukwuma, Jaxie Thund-a-Lund, Eric Muldoon, Kevin Price, True Gordon, Chris Del Rosario, Bill Taylor, Garth Graham, George Koris, Kari Legates, Robert Browning, Everyone wants to be a cat, Christine Ferguson, Monte Plays Games, Bernard Pang, HARMS, Ari Nahmad, Alyssa Feldhaus, Noel Aguilar, 5ityf, Lez Dunn, Jeff Blessing, Brian Hann, Gregory Rodgers, Renzo, Serge, Ralph Loizzo, Tejas Phatak, André Shabazian, Lester W Marlatt, WILLIAM WALKER, Prema Wargo, Gaz Davies, Shota Dzidziguri, Phillippe Chicoineau, Hunter Hall, Marcos Lima, Mark S. Jones, Robert Fisher, Dave Zetrenne, Moad, Brain Jones, Sergio, Jeff Sauer, Donald G Smith, and Aleksey Parsetich for supporting us this week. Subscribe to SiriusXM Podcasts+ to listen to new episodes of StarTalk Radio ad-free and a whole week early.Start a free trial now on Apple Podcasts or by visiting siriusxm.com/podcastsplus.

Transcript
Discussion (0)
Starting point is 00:00:00 So Harrison, if you loved Einstein before, how do you love the man now? Oh my gosh, so much. And I already loved him. I had a t-shirt when I was a kid of Albert Einstein on a surfboard. So you a geek kid? Oh, 100%.
Starting point is 00:00:09 And was that like a backhanded reference to gravitational waves? I think I didn't know that at the time, but now I do. Yeah. Who knew that Einstein's smorgasbord left crumbs for the rest of us to discover and win Nobel prizes on?
Starting point is 00:00:23 Oh my gosh, all that and more coming up on Star Talk. Welcome to Star Talk, your place in the universe where science and pop culture collide. Star Talk begins right now. This is Star Talk. Neil deGrasse Tyson, your're a personal astrophysicist. Got with me is my co-host, Harrison Greenbaum. Harrison, how you doing, dude?
Starting point is 00:00:51 Good to be here. All right. Yeah, I'm excited. And that's your first Star Talk rodeo? Nope, not at all. All right. Maybe it'll be my first rodeo. I've never done a rodeo.
Starting point is 00:00:58 I think I would die immediately. That's not happening here, I promise. We're gonna talk about Einstein today. Love it. You gonna help me out on that? I've heard of him. I need more be doing that. That's not happening here, I promise. We're gonna talk about Einstein today. Love it. You're gonna help me out on that? I've heard of him. I need more help than that. He married his cousin, I know that.
Starting point is 00:01:10 Every time we talk about Einstein and related subjects, we have our go-to person at large. Jana Levin, Jana, welcome back to Star Talk. I'm always glad to be here. You're like a regular practically. It's always fun, I know. Because Einstein's a regular. I know, I feel like I just wanna here. It's always fun. I know. Because Einstein's a regular. I know.
Starting point is 00:01:25 I feel like I just wanna hang around here all the time. So, Janet, you are the Tao Professor of Physics and Astronomy at Barnard College of Columbia University. Theoretical cosmologist. Yeah, I mean, I say astrophysicist these days. Or theoretical physicist. Only because people think cosmology's like cosmetology and stuff. They wanted me to do their makeup.
Starting point is 00:01:48 I want a fancy title, I'm not a comedian, I'm a punchline engineer, specializing in ha-ha building and giggle construction. So you're director of sciences at the Pioneer Works in Brooklyn, one of my favorite places. This is quite the juxtaposition of science, creativity, and art, and it's just we're creative people on both sides of that fence, if there really is one,
Starting point is 00:02:12 come together and express themselves. I really feel like Pioneerix is a sanctuary because science is part of culture. We're not trying to hide it in something else, we're not packaging it in something else, it just exists out there, and it's a big appetite for it. People wanna know. And you've also written a bunch of books.
Starting point is 00:02:28 I have two with me right now. The Black Hole Survival Guide. It looks tiny but it's dense, like a black hole. Spoiler alert, it does not end well. It does not end well. I could've guessed that, I think. So, Black Hole Death Guide, and then Black Hole Super-Black Hole Guide.
Starting point is 00:02:47 Exactly. The book is normal size, Neil's hand is gigantic. There's an element of truth to that. And my favorite book I like to pronounce, the Black Hole Blues. I love that. That's the British cover, that's very nice. Oh yeah, so I get around.
Starting point is 00:03:04 What's the difference between the British and, that's very nice. Oh yeah, so yeah, I get around. I get around. What's the difference between the British and the, is there an extra you? Yeah, right, well actually they're completely different covers. Yeah, they decide, yeah, different countries, they have issues with each other's covers. They change the Albert Einstein's teeth
Starting point is 00:03:19 to make them feel less bad. In one language and translation, they changed my last name. To what? Levanova. well as it's funny. In one language and translation, they changed my last name. To what? Levanova. I think it was Czech. I thought that was some serious license. We'll help you out, we'll make it less dewy. What?
Starting point is 00:03:35 I kind of liked it. Yeah, because they made it like Italian almost. It's just a thing, women are Levanova. The ova, okay. Uh-huh, yeah. It was a a thing, women are lava nova. The ova, okay. Uh-huh, yeah. It was a female thing. So, we're here to talk about what I've intermittently referenced as Einstein's crumbs.
Starting point is 00:03:54 You know, when you're eating a meal that you enjoy and something spills over the edge, you don't even notice. Because the meal is so good. And then you walk away with your plate and other people see what spilled off of your plate,, hey, that's tasty, I want that, I can work with that. So in this analogy, the other scientists are my dog. Who comes in and is like, crumbs, this is the best.
Starting point is 00:04:17 So these Nobel Prize winning scientists are Rufus. Thank you. I had not thought about it just that way. Let's benchmark ourselves, Janna, to, do I pronounce this right, Anis Mirabilis? It's Latin, I'll take it. I don't know. 1905.
Starting point is 00:04:37 Yes, quite a year. Just listen to me. Young man. What did Einstein do in 1905? And the dude was 26 years old when this happened. Go for it. So he writes a series of papers, all of which completely knock the world on its proverbial arse.
Starting point is 00:04:51 Each one? Yes, each one. On its anus, if you will. Yeah. I'm sure there's Latin for that. On its miraculous anus. Yes, that's my dating profile there. So let's see, what are they?
Starting point is 00:05:04 Photoelectric effect? Yes, that's my dating profile. So let's see, what are they? Photoelectric effect? Yes, which? The photoelectric effect was the idea that sometimes light behaved like a particle and not a wave, and so sometimes when you bombard a surface with light, it will knock it like a basketball might dislodge something from place, as opposed to accumulating energy like a wave might.
Starting point is 00:05:25 And so it really was very shocking in terms of. Was that the first demonstration that light could be also referenced as particles? Yeah, it was the first observation, connection between theory and observation that it is actually behaving like a particle sometimes. Very shocking, because 1800s we thought of light as a wave and we often still do because it's very convenient
Starting point is 00:05:46 to do so sometimes and sometimes it's acting like a wave. But here was an instance where it really acted more like you threw a basketball at something. A really tiny basketball. A really tiny basketball. Which was incredible for Einstein to observe because basketball hadn't been invented yet. Right and I somehow don't see him,
Starting point is 00:06:03 I don't know, jiving with the sports analogy, but anyway, so photoelectric effect, shocker. Paper one, paper two. Paper two, special relativity, where he has. Oh, just that. Just that. So a lot of times, so the theory of relativity became this real colloquial thing,
Starting point is 00:06:18 everything's relative and it became invest in society. I often say it could have been called the theory of absolutism, because what Einstein really had done is he had adhered to the absolute limit of the speed of light He took that more seriously than anybody else was taking it at the time In fact people were struggling to get rid of it This idea that speed of light was a constant and they were doing everything I can to dethrone that concept which really wasn't taking Well, it's not just that it's a constant, it's that it's a constant no matter how,
Starting point is 00:06:47 when or where you measure it. Absolutely. You're getting the same answer, even if you're moving and the light is moving relative, you measure the same speed of light. Right. Which doesn't exist for anything else. That's insane.
Starting point is 00:06:58 That was an insane concept. Two cars coming at each other, or coming at each other faster than if one of the cars stops. Okay, but that is not true at the speed of light. You run at the speed of light, maybe you're running slowly, maybe you're running near the speed of light yourself.
Starting point is 00:07:13 It's still coming at you at the speed of light. It is chilling, strange, seems impossible. So I think a simpler example is I'm on the front of a train, let's say the train goes 60 miles an hour, and I throw a ball 40 miles an hour, can I throw that fast? Probably not.
Starting point is 00:07:27 Okay. I know I definitely can. Five miles an hour. I think you can do anything, Neil. I can do anything. I think you can do anything. I throw it 40 miles an hour in front of the train. You're standing at the platform,
Starting point is 00:07:36 how fast is the ball passing you? Do-do-do-do. Right, is it not adding the two up? Yeah, yeah. So it's 100 miles an hour. 100 miles an hour. Should be, I mean that was common experience. But if I'm on the front of the train.
Starting point is 00:07:46 I mean I'm not calculating the speed, I'm worried that Neil deGrasse Tyson's on the top of a train throwing the ball, I'm very confused. So now I'm on the same 60 mile an hour train, I shine a beam of light, and you measure the beam of light going by you, it is the same speed of light.
Starting point is 00:08:01 We don't add the train. We don't add the train. We don't add the train. That's bat shit crazy. It is crazy and Einstein meditated on this for so long and there's kind of a simple way to see, he said, well, you know, what is speed? It's the distance you cover in space
Starting point is 00:08:16 divided by the time elapsed. So it has to do with space and time. I mean, I mean, that's a huge leap already. And he said, I'd rather that your measures of space and time are relative than give up the absolute nature of the speed of light. So two of the- So your very measuring stick changes.
Starting point is 00:08:35 Changes. Relative to the other. So that you get the same answer. So that you get the same answer. That's, that's, that's, your measuring stick and your rate that time ticks. That's crazy. I mean I still get chills a little bit.
Starting point is 00:08:47 Yes, 1905. Which drug is he on? I know. Is it opium? Is it ether? At the time. Ether? He's not doing ketamine shots.
Starting point is 00:08:55 No. Okay, give me more, so that's two. Brownie in motion? Talk about it, give me some brownie in motion. So if you look. I mean I think that feels like a dirty topic. I don't know if that's appropriate for this. Actually, I'm not, but Neil knows why it was called Brownian.
Starting point is 00:09:10 There's a guy. There's a guy who first talked about the statistical. Observed it, but didn't fully understand it. Right, so we've all observed it. So you go to a window, the dustier the house, the better, you pull the curtains aside, and you start to see all the particles move around. They don't fall like rain, they bounce around.
Starting point is 00:09:28 The dust particles. The dust particles. And you can see the reflection of the dust in the air. You know, it's kind of a beautiful image, the sunlight hitting, reflecting off the dust particles. Of an undusted apartment. I was gonna say, yeah.
Starting point is 00:09:38 Of grandma's. My OCD is like, no. Clean that. Why have you let it go so far? But we all have had that observation and we all know it doesn't fall like rain. So Einstein also relates this to the quantum nature of matter.
Starting point is 00:09:52 He says fundamentally, air is not a continuum. If I look at it at the microscopic level, I'm gonna realize it's made up of individual molecules and the molecules are moving randomly because they're knocking into each other. They're bouncing around, he called that Brownian motion. So they bounce around randomly because they're knocking into each other. They're bouncing around, you call that Brownian motion. So they bounce around randomly because they're kind of constantly knocking it,
Starting point is 00:10:08 banging into each other as they move around. And it was more evidence for the quantum nature of reality in very early years. I think it was one of the first supportive bits of evidence that atoms even exist. That's right. Because in other words, you can have a big, you use the air dust analogy,
Starting point is 00:10:26 but in a liquid solution, if you have a suspended particle that's larger than the molecules themselves, the particles sort of moves around in response to the collective energy of all the particles that are around it. And you can calculate what should happen if this liquid is composed of these tiny particles. And then you only get this motion
Starting point is 00:10:52 when you have atoms doing the constant agitating. Jostling around. Jostling, that's a better word. We talk about the temperature in the room all the time, but what that really is is the average of the thermal motions of an awful lot of particles. And the statistical behavior later, very well predicted by Planck.
Starting point is 00:11:08 And so this was all part of that early era of starting to understand that if I look at a glass of water, it is not a continuum. If I get small enough, it is actually made up of individual molecules. And it was in the fourth paper, wasn't there? E equals MC squared. Oh, okay.
Starting point is 00:11:23 That's a pretty good one. Okay, yeah, how can I forget about that one? Yeah, yeah. That was the whole paper, he just wrote E equals MC squared. E equals MC squared. Mic drop. This has been a busy year. Except they didn't have mics then.
Starting point is 00:11:35 But drop, he'd find something to drop. I'll be a speaker. Refrigerator drop, he was working in a patent office, right, refining things like refrigerator coolants and refrigerator cooling mechanisms. And at the bottom drawer of his desk, he had what he called the physics department. And in the physics department,
Starting point is 00:11:51 he was working on these papers between refining people's patents. And E equals MC squared is one of the most gorgeous results, obviously, most famous equation. Obviously, we all love this result. And the implications of it went so far beyond his initial motivation for thinking about it. But it's so far beyond.
Starting point is 00:12:10 I mean, it's changed the world as we know it in so many ways. But he was so. Okay, so of those four results, two of them were stapled together for the one Nobel Prize that he got. Brownian and photoelectric. Correct, right? And so he's got one Nobel Prize for two got. Brownian and photoelectric. Correct. Right?
Starting point is 00:12:25 And so he's got one Nobel Prize for two things that are- And not for eagles, MC Slater. And not for eagles, MC Slater. Not for relativity. Let alone general relativity, which comes 11 years later. So for me, what's intriguing is, his Nobel Prize is some of the least interesting work that he's done.
Starting point is 00:12:43 Right. It was somebody who wins a Grammy for their worst album. Well, it was practical. It was practical. The Nobel was always very attached to verifiable results. So it was very hard for Stephen Hawking to get nominated for a Nobel Prize. It was surprising to me that even Roger Penrose
Starting point is 00:12:59 not only was nominated but was awarded the Nobel Prize because they were so theoretical. And the Nobel Prize is often awarded for things that have been verified by experiment, not a minute before. That's the intention. That's correct. Because it was the idea that if it's a theoretical result
Starting point is 00:13:13 could go with the wins. Right, right. Whereas if you anchor it in an experiment, then we got legit, you become legit. So let's- And he did this all at 26. By the time he turned 26, yeah. I'm 38, so this is very demotivating.
Starting point is 00:13:28 You got it! Sorry, Harrison. I'm already 12 years in past. What is your mommy saying? Look at us both consoling. Okay, so you're 38? 38. So when Mozart was your age,
Starting point is 00:13:40 he was already dead for a year, okay? So, I don't mean to tell your mom this. Oh no, it's not gonna happen. You are such a disappointment Hello, I'm Alexander Harvey and I support Star Talk on patreon This is Star Talk with dr. Neil deGrasse Tyson. So let's pick up some of the crumbs now. All right. So let's talk about his cosmological constant.
Starting point is 00:14:22 OK. What's up with that? I love the cosmological constant. It's up with that? I love the cosmological constants. The guy couldn't be wrong. It's like he couldn't be wrong even when he was terribly wrong. Even when he was terribly wrong, he was right. He was somehow later would turn out to be right.
Starting point is 00:14:33 Yeah, so one of the crumbs, a crumb you don't even know it's gonna grow into an interesting crumb later. So your dog would need to give it a chance before it laps it up. He put it in his bed and he saved it. Yeah. I should go look up some more Einstein crumbs actually now that you're saying. The dog would need to give it a chance before it laps it up. He put it in his bed and he saved it. In the bed. Yeah.
Starting point is 00:14:46 I should go look up some more Einstein crimes, actually, now that you're saying. Maybe this will give me some. I got to open it for yourself. Invigorate some, yeah. Yeah, yeah. Well, so Einstein writes down the general theory of relativity, which goes beyond special relativity.
Starting point is 00:14:57 This is later, 10 years later, okay? Yeah, it takes him a little bit. 36, all right, now we're talking about it. He's feeling it. He's feeling that there's something there that he wants to describe, not just that space and time are relative, not just that I can rotate space into time,
Starting point is 00:15:08 that they're one kind of space time, but also that space time itself could maybe curve, stretch, be mutable, respond to matter and energy, that around the earth, the reason why the apple falls from the tree is because it's following the natural curve in space created by the mass of the earth. This is general relativity now. He generalizes the theory away from flat space-time
Starting point is 00:15:31 to curved space-time. Now, once he does this, he still cannot predict everything that this theory suggests. It's just abundant. It's so abundant that today people are still trying to find solutions from the series to describe universes. People came to him, a number of different scientists from around the world, very international experiment, and over very quickly and over the next couple of years said, you know, your theory predicts that the universe is expanding. So other people are studying his theory. They're imagining what if I have an average distribution
Starting point is 00:16:05 of galaxies in there, all this stuff now, but I smooth it out, I imagine it's pretty smooth out there and they say, how is space-time mutable in response to this distribution of energy? And you would sort of think, well, a lot of gravity means things are gonna recalabse. Yeah, everything is mass. Everything is mass, and so, you know,
Starting point is 00:16:22 it's all gonna pull towards each other and it's gonna cause a collapse of the universe, in which case the universe shouldn't be static, stable, or permanent. And Einstein really is resistant to this idea. He does not like it. And he says to himself, I must have made a mistake. In my fundamental equations of general relativity
Starting point is 00:16:42 that describe every possible scenario in the universe. And he adds something called the cosmological constant. Because technically, mathematically, it was consistent with Einstein's laws. And if you're being completely thorough, you would have included this term, called this cosmological constant, and it's this magic term.
Starting point is 00:16:59 Doesn't know what it is physically, doesn't know what it refers to in terms of known forms of matter. It's not galaxies. So you can have a math representation of an idea, not all of which actually applies to reality. Yeah. I also liked the idea that you could just throw that in
Starting point is 00:17:11 and be like, I don't know if my theory is right, but there's this magical extra thing. Right. And now it's right. He knew it was mathematically consistent, and that's exactly what he did. Now you know my taxes. That's what I wanna know.
Starting point is 00:17:20 That's exactly what he did. Mathematically legit. He said, look, maybe nature produces an energy density that's uniform across space and time, and it is an absolute constant, and it has this very different property that it actually pushes the universe outward, and if I tune it to exactly the right value,
Starting point is 00:17:37 I'm going to balance things, and the universe will not collapse, and it will be permanent. And it will exist that way forever. Because why should the universe is doing anything at all? Right. It doesn't owe you anything. Right, the universe is just there. And if it's just there, you gotta somehow stabilize it.
Starting point is 00:17:50 Yeah, so he stabilized the universe with the cosmological constant. There you go. Now he has a universe that's permanent, has lived forever, will last forever, but not so fast because very quickly, people study the mathematics of this and they say it's very unstable. You basically have stood a pencil on its tip
Starting point is 00:18:07 on the top of a hill and said it's stable. I mean, you can do it for a second. But it very quickly wants to fall over and begin to do something. It'll fall in one direction or the other. Or the other, and the two directions in this case collapse or expansion. Yes, there you go.
Starting point is 00:18:21 So either the universe is collapsing or it's expanding. It does not want to stay static. And he called it his greatest blunder. Now he made a lot of kind of mathematical mistakes, so he was not afraid of that. And he was really so experimental and so daring. So the idea that he even called it a blunder, I think was because it was a blunder of intuition.
Starting point is 00:18:43 But resistance. Wait, but wait. It's not a blunder until it's a blunder of intuition. But resistance. Wait, but wait. It's not a blunder until it's a blunder. So he puts it in reluctantly and then Hubble comes along. Later in the. Oh that's true. Yeah, yeah. A telescope phase.
Starting point is 00:18:59 A telescope came first. Yes. Edwin Hubble comes along in the same decade, discovers that the universe is not static, it's expanding. So now we're okay, because that's one of the signs. That's one of the signs, and so you don't even need the cosmological constant. You don't even need the cosmological constant,
Starting point is 00:19:18 so he comes along and says, look, the universe is not dominated by the cosmological constant from what he could measure, It's dominated by the galaxies, and the galaxies are in fact expanding away from each other. The universe is in fact expanding. And it was a real shock. We had no physical way to understand a force or a pressure in the universe going opposite gravity.
Starting point is 00:19:40 There was no way, there was no. And then philosophically, what is it expanding into? I know, that's the way that we haven't gotten there. We'll get there. Yeah. But you know, at the time Einstein was first doing this, especially 1905, I mean, he didn't know there were other galaxies out there.
Starting point is 00:19:55 Oh yeah. I mean, imagine that. We knew about the Milky Way, our little island of hundreds of billions of stars. The whole universe is just the stars in the night sky. And that was that. Right. I mean, he imagined, I mean,
Starting point is 00:20:05 but it wasn't until Hubble that we identified that some of those objects out there really were, first of all, other galaxies, and that they were all moving away, essentially, on average, and that it looked like the universe was, in fact, expanding. So at that point, he doesn't need the cosmological constant, and then he declares.
Starting point is 00:20:21 His greatest blunder. His greatest, and then fast forward to 1998. Right, and there it is. And we discover the cosmological constant operating in the universe. It's measured and it wins a Nobel Prize. For him? No!
Starting point is 00:20:37 God damn it! Plus they don't give it to you if you're dead. They don't announce that you're a winner unless you're alive. But if you die between the announcement and the award ceremony. Then you're okay. Then you're, you're still dead.
Starting point is 00:20:53 You gotta hold on. You gotta hold on until the announcement. Yeah, if you die, you still get the award, but you're dead. So in this sense, what he rejects as a blunder becomes an actual measurement, and they get the Nobel Prize for making that measurement. So now the reason why they can measure it,
Starting point is 00:21:12 even though it's not static, you might think, oh, they could only measure it if it made the universe static or something. It actually was very unstable. What it really wants to do is kind of dominate. So as all the energy density in the universe kind of slowly wanes, this constant is eventually there to peak above all the others as they dilute away.
Starting point is 00:21:30 It just doesn't go away. And so eventually. It's a permanent feature of the vacuum of space. It's a permanent feature. It's crazy. Empty space. Right, there's no way. It is the energy of empty space.
Starting point is 00:21:41 Energy of empty space. So eventually it will dominate the property of the universe and what it does when it dominates is it drives the universe not only to expand, but to expand at an accelerated rate. It's getting faster and faster. Dark energy. I've heard about the energy of empty space from my realtor.
Starting point is 00:21:56 Is that right? They walk around and say, you should feel the, there's nothing in here yet. But you should feel this energy of this empty space. Did they sell you air rights? Exactly. Maybe they should charge you extra for the empty space. Did they sell you air rights? Maybe they should charge you extra for the dark energy. Yeah.
Starting point is 00:22:08 In the air rights. Don't give them that idea. And in 10 to the 22 years, which is a long time from now. That's a pretty long time. Pretty long time, but I have it on my calendar. The dark energy will become so dominant, and the expansion will become so dominant and the expansion will become so accelerated that the fabric of space time cannot keep up with it and it will rip.
Starting point is 00:22:31 Well that's not, you don't wanna be alive then. It's called the big rip. That's if it goes unchecked, the big rip. So if there are still humans that far out, they have to figure a way to stop it? To not have it rip, right. It'll rip the very structure of the fabric of space time. humans that far out, they have to figure a way to stop it. To not have it rip, right. It'll rip the very structure of the fabric of space.
Starting point is 00:22:48 Cosmological climate change. Like they'll have that, you know. Does it happen instantaneously or do they feel it slowly start to happen or is it like they just know at a certain time it's all over? I know, you start seeing it all around you. Stuff starts flying apart. Oh yeah, that may not face like it's gonna happen
Starting point is 00:23:02 in your lifetime. So now here's a good one. Great, great, great, great, great, great good one, maybe you don't know this one. Okay, he predicts based on general relativity that if you have an alignment of two objects, one of them will get lensed around it. And you get what is called an Einstein ring. Because if two objects are perfectly aligned together,
Starting point is 00:23:22 the curvature of space will take that light and spread it into a perfect ring. And so you would see rings around stars in the night sky from another star that's exactly aligned behind it. Here's the problem. Back then, the universe was composed only of stars, and stars are so small at those distances, you would never get an exact alignment.
Starting point is 00:23:46 So he said this will probably never get observed until we discover whole galaxies out in the universe. And so it's no longer a point of light. The galaxy has a whole field. So there are many places you can be behind a galaxy and still have this phenomenon. So we see gravitational lenses all the time. Yeah, and we see it around black holes.
Starting point is 00:24:06 That's how we detected a black hole. We took a picture of a black hole because the light from behind it went above and below and cast the shadow of the black hole. There's no above or below in space. Went around. You in my office, you got to. Went around.
Starting point is 00:24:22 Went around. She's out there in the face of the compass like what? It's all north. So that was one that he predicted, assumed it would never be found, and then in my lifetime, like while I'm in graduate school, we discover gravitational lenses. Because people found these objects hanging off the side,
Starting point is 00:24:41 they said, what is that? Why is it a little distorted? It's like a whole arc. It's a whole arc, and then he took a spectrum of it and exactly matched the spectrum of the object on the other side and that's the splitting of the light around the object. So that's another little crumb
Starting point is 00:24:53 that fell off the dude's plate. Okay, so tell me about black holes themselves. Yeah, well black holes also predicted from his mathematical theory. But did he predict it? But not by Einstein. Why not? He did not predict, well you know, it's as I said abundant, but not by Einstein. He did not predict.
Starting point is 00:25:05 Well, you know, it's, as I said, abundant. It's endlessly productive. You can sit there. So black holes are crumbs. Black holes are yet to be shaped crumbs. Yeah, you have to go at the equations to decide what you want to think about. Because it describes every possibility imaginable.
Starting point is 00:25:20 Once you put matter and energy in, how will space and time curve? So I could, how does that couch curve space-time? Not a great question, scientifically not one most people aren't gonna spend their time on, but one guy decided, you know, he's on the Russian front during World War I, Karl Schwarzschild. Yes, did he die on the front?
Starting point is 00:25:37 He did, he died like six months after, I think, this correspondence with Einstein where he sends him, he said, I found a very simple solution to your equation. Did he die on the front because he was busy writing letters to Einstein? I know, but not paying attention to the bullets. Hey buddy, you're on the front.
Starting point is 00:25:51 Yeah, I think he contracted some infection. It was quite dire. A lot of people back then died of non-bullet injuries. Related, yeah. So, but he said, imagine, it was a thought experiment, imagine you took all the mass of a star and you crushed it to a point, or it could have been a planet,
Starting point is 00:26:08 or it could have been anything. So you're imagining that all the mass is at the center and a point, you don't ask how nature would do such a thing. I don't even think Schwarzschild believed that there was a way nature would do such a thing. Certainly Einstein didn't, but the math was sound. It described the curvature of space-time if you're far away around a star or the Earth,
Starting point is 00:26:25 but as you get closer and closer and all the mass is still in front of you, eventually you form this event horizon where not even light can escape. That's really what we mean by the black hole. Because the surface gravity gets higher and higher. Yeah, it just gets, because the mass is always in front of you
Starting point is 00:26:35 if you think about it. Yeah. Like if I go inside the sun, the gravity drops off because I'm leaving some of the mass behind. So you're vaporized. I'm vaporized. They didn't bring that complication.
Starting point is 00:26:44 Right, right. I always say, you know, black holes are much more benign than people give them credit for. Oh yeah, you can just dive. The star is incendiary, right? Right, right, right. But the black hole, you can get real close. So this is what I-
Starting point is 00:26:54 You just can't get out. So we call this the Schwarzschild solution to Einstein's equations. Yes. So Schwarzschild does this, but he dies, so no Nobel Prize for him. But it's still an amazing result. And Einstein doesn't think they're real.
Starting point is 00:27:07 He says it's beautiful, he helps get it published, and he couldn't believe that such a simple solution came out so quickly, it was within six months. Or that nature would even allow it. Yes, he thought nature would not allow it. Yeah, that there could be something that arises that prevents such a catastrophic collapse of matter itself. I mean try to.
Starting point is 00:27:27 Just staring at this guy, no. Well try to crush a soda can. It's nearly impossible to get past a certain point. It's hard to do. It's hard to crush things because there's matter forces that resist. Wait, that's a soda can with soda in it. Empty.
Starting point is 00:27:39 I could otherwise totally crush a soda can. Can I be clear about this? That'll be like a demo that I wanna see added. But only to a point, you can't make a black hole. No, not a black hole, right, right, right. Because the atomic forces will resist. Now, so I have to share this quick story with you. I'm having dinner with Stephen Hawking and.
Starting point is 00:27:56 Nice flex. Yeah. And so I was talking about Isaac Newton, where he did not figure out that the solar system was stable using his own equations, okay? It turns out in the solar system, here's the sun and here's like Earth going around, you're Jupiter.
Starting point is 00:28:17 Every time I go between the sun and Jupiter. You're saying I'm very big? Yeah. Yeah, exactly. No, I'm saying you're gaseous. I've been working to get to Mars. I'm saying you're gaseous. I've been working to get to Mars. I'm saying you're bulbous and gaseous. So Earth comes around and it feels you tug a little
Starting point is 00:28:31 because you're closer here, right? And then over here and it comes back around and feels a little tug. So all these little tugs, he knew that if this continued, Earth would just fly out of its orbit for thousands, millions of years. This would just be this runaway destabilizing force going on in the solar system.
Starting point is 00:28:51 And so, you know what he said? He said, God must step in and fix things. Because that's how badass he is. He said, I know my equation. Where? So the only thing, because we see a stable solar system. Okay, but 100 years later, 100 years later, Laplace comes up with a formalism,
Starting point is 00:29:12 a branch of, it develops with others, but it develops a branch of calculus that can demonstrate that these little tugs, which are multiple little tugs on a major system, all cancel out. It's called perturbation theory. But it's just a branch of calculus. The dude invented calculus. So you can't figure that out.
Starting point is 00:29:36 So I asked Hawking, I said, how come he didn't figure it out? Because who else are you gonna ask, if not Stephen Hawking? And you waited a very, very long time for a reply. Yes I did, thank you. So I went on to other conversations. And when he was ready. With his eye blanks, he's assembling the answer.
Starting point is 00:29:57 And it must have been 20 minutes. 20 minutes later, he said something simple and brilliant. He said, you can't think of everything. That took him 20 minutes to type? No, no, no. You can't think of everything. And I said, that is so beautiful. And then he went on to say, to follow that with,
Starting point is 00:30:18 Einstein did not come up with black holes. That's right. Because you can't think of everything. You can't think of everything. And I said, that's comforting actually. I mean an entire industry of scientists have been since still working on Einstein's equations. I got another one for you.
Starting point is 00:30:33 He wrote a research paper on the stimulated emission of radiation. This is an extraordinary result that you have to kind of be on the inside to appreciate. Okay, I'll tell you what it is, you ready? So you have an atom with these energy levels where the electron hangs out. It's in discrete energy levels,
Starting point is 00:30:51 it can't hang out anywhere. It's quantum. A quantum is units of anything, okay? So it's quantized. Even solace. Quantized. Think about it if you have a quantum of solace. Very Marquez, somehow. Yes, it is.
Starting point is 00:31:09 So the electron can only be in any one of these discrete levels at any given time. And if it's at a higher level, left to itself, it'll want to de-excite back to a lower level. And it shoots out a photon in so doing. So this is what atoms just want to do. If you excite them, they want to de-excite. We got this.
Starting point is 00:31:29 So let's go back to our atom and we have an electron hanging out in an energy level. Now, I send in light photons that are exactly the energy level that'll boost this up. So it's gonna absorb those and take them up, okay? It's gonna do that. However, here's what he discovers. That if you bathe an atom with an electron
Starting point is 00:31:55 at a given level of photons that would boost it, it will also spontaneously trigger it to de-excite. At the same time. Yes! Exciting and de-excite. At the same time. Yes! Exciting and de-exciting. No, no, no, I mean, it will, it will, not all the, all the photons will not go to just boost it. Gotcha.
Starting point is 00:32:12 Being in that bath will also de-excite it. For, for, there's no, there's no classical understanding of that, okay? So it's the stimulated emission of radiation. Normally when you stimulate it, it absorbs it. This one, you shine on it, it de-excites. Okay, that's a weird result. It's a quantum result that he deduces
Starting point is 00:32:36 using math and quantum physics. And what do we get out of this? Well, we get lasers. Lasers! You say that so calmly, we got lasers. Lasers! You say that so calmly. We get lasers. We get lasers.
Starting point is 00:32:50 I'm going to pull your hair. Pull some. You grab some more. So it's really an interesting history because there were also masers before lasers, which were microwave versions of this. Joe Weber, who wanted to study gravitational waves, was working on masers and they were completely overrun by the laser. So give us the full acronym.
Starting point is 00:33:08 Microwave amplitude stimulated emission resonance or something. Laser stands for. You get a C minus on that one. Laser stands for look and stare experience regret. Oh, very good on the spot. Or it's like remember George Costanza with the laser pointer? Look and stare, experience, regret. Oh, very good on the spot. Or it's like, remember George Costanza with the laser pointer?
Starting point is 00:33:29 So it's like, look, a Seinfeld episode reference. Oh, hey, this guy's good. That's very good. That's very good. From here on, let us call it. So the laser is an acronym, like scuba and all these fun acronyms. Laser. Laser, light amplification.
Starting point is 00:33:46 Amplification. By the stimulated emission of radiation. And those are the three words in his paper. I did a real bad job. So light would be. He has a sir of laser. So it'd be visible light. But it works with any kind of photons.
Starting point is 00:33:58 Microwaves, it turns out it's easier to make a microwave laser. Microwave amplification by the stimulated emission of radiation. So this was, this is just some paper he does like while he's taking a crap, right? And publishes it, and then. His poop paper. And then third, I don't know if he was actually on the toilet.
Starting point is 00:34:15 He was experiencing some Brownian motion, if you will. Oh, stop! Kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk A Brownian movement, yes. So that, for me, that's my favorite. Is it? Of his crumbs. Of his crumbs. Interesting. I mean, it's an unbelievable technological advance. It's incredible, it's everywhere. Yeah, because the amplification is,
Starting point is 00:34:36 if you emit light in this bath of light, and that light you emit is the same light when brought around that will de-excite it and emit a photon. So it's almost self-feeding. The light that it emits is the same light that it then absorbs. So this loop, you can pump light that way
Starting point is 00:35:01 with the right number of molecules in the right cavity. Oh my gosh. And it becomes very coherent and very tight beam and very intense. So it's a way of getting this incredible intensity at this one very narrow frequency range or light range. Yeah. And so at the time I'm sure he was saying to himself, skin peel.
Starting point is 00:35:19 Right, I was like, I'm gonna have the laser. Yeah, I mean the application of laser were, oh my God. So the people who invented the laser, I think it was Charlie Towns, got a Nobel Prize for that. Wow, did he expect it to be in like a Walmart? Yeah, I know, at the checkout line. Yeah, no, the first lasers were huge. And so just the idea that here's a paper
Starting point is 00:35:43 that 30 years later becomes a device and the device gets the Nobel Prize. Incredible. Do you know when Townes got the Nobel Prize? So the laser was invented in 1956, 57, and Einstein died in 1955. So he would not have seen. He was so close to seeing the laser.
Starting point is 00:35:57 So close, so close. And they were gonna operate on him because he had some element that was. With a laser? No, no, stop. No, no, stop. And he said, he was already in his 70s or something, he said, my work is done.
Starting point is 00:36:10 Did he really? Yes, I thought that was classy. He was just scared of medical care. Wow, I mean he was still so combative with quantum mechanics. I find it fascinating. Which one, the God Does Not Play Dice? God Does Not Play Dice.
Starting point is 00:36:24 There are others. And then was it Niels Bohr who said back to him, another physicist, Einstein stopped telling God what to do. It was one of several times he talked about God and God's intentions because quantum physics is fundamentally statistical. It does not describe a unique objective reality. It only describes a statistical reality.
Starting point is 00:36:46 And this felt very bad to Einstein, even though he made significant contributions to quantum physics. This feels like a trend though, because Newton also was like, I don't know, God. So a couple of fast other ones. So he predicts out of general relativity that certain phenomenon should produce ripples in space-time continuum, gravitational waves. Right, gravitational waves.
Starting point is 00:37:29 So he says, look, if the Earth can curve space-time, if the Sun can curve space-time so that the Earth falls around the Sun, then if these systems move around, the curves have to move too. So the curves themselves have to modulate like waves, and he predicted something called gravitational waves, which are these silent waves in the shape of space time.
Starting point is 00:37:49 And they are not visible, it's not light. It's pure gravity, it's not light. But if you saw something, you could see it bobbing on the wave as its path changed around and moving out. So if the sun decides to do something crazy, we would know eight minutes later when the wave got to us. So I think I have this right. There is a cottage industry rising up in astrophysics
Starting point is 00:38:12 where they're looking at the pulsars in the galaxy. Pulsars are very fast rotating stars that have extremely precise timing. Precise. So if there's a gravitational wave not coming towards us but passing across our field of view, we can see the effect of the turbulent space-time wave on the timing of the pulsar as it goes through the wave.
Starting point is 00:38:41 And then you can see them move across the universe. They'll bobble around, they're like buoys on the ocean. Yes, you'll see this effect as that happens. And so it's like, whoa. He wrote many papers where he thought they didn't exist. So he really struggled with whether or not these. He headed his nuts there. I know black holes exist, but maybe.
Starting point is 00:39:03 Well, gravitational waves were really confounding, whether they carried energy or were real in a substantive way or was just, oh, I'm just changing my coordinates. It's just, it's not physically real. There's no physical impact. This was confounding for decades. He once would write, he wrote papers where he said
Starting point is 00:39:18 they do not exist, they would be accepted for publication, and in the space between publication and sending it to press, he would change the entire paper and say they do exist. In the space between it being accepted and going into print. Yes, between it being accepted and going into print. He would change the entire conclusion, rewrite the paper, and say they do exist.
Starting point is 00:39:33 He's getting his best. He wants to be right no matter what. Both papers. Right, right, right. So then we decide maybe we can detect some of these, and Kip Thorne, who was a guest on our show, we took Star Talk to him, because he's Kip Thorne. We moved the mountain to Kip Thorne, who was a guest on our show, we took Star Talk to him, because he's Kip Thorne. We moved the mountain to Kip Thorne.
Starting point is 00:39:47 We went to his home office in Pasadena. He's a professor at Emeritus now, I think, at Caltech. And we talked about Interstellar, because he was an executive producer on Interstellar. He wrote the original treatment. It was like his dream idea. He did write the original treatment. He brought on Christopher Nolan to realize those views.
Starting point is 00:40:06 It wasn't the other way around. So he petitions Congress and the National Science Foundation and other agencies to, and with a lot of support from other physicists and the like, to build the first gravitational wave detector. And it's built, it's called LIGO, Laser Interferometer Gravitational Observatory, LIGO, sensibly abbreviated LIGO.
Starting point is 00:40:32 And they made it really sensitive to this, they have two lasers that go off at right angles, and if a wave washes over Earth, the length of one laser path will change relative to the other. They make this measurement, bada bing, they found the first colliding black holes, which deposited so much energy into the space-time continuum
Starting point is 00:40:55 that we have a chance of measuring it. Yeah, I mean it was the most powerful event humanity's ever observed since the observation of the Big Bang itself. More energy came out of this. All in gravitational waves. In utter darkness. Utter darkness.
Starting point is 00:41:08 And yet, the power was greater than all the stars in the observable universe combined at that moment. But it all came out just in ringing space, literally. So darkness could not see it with a telescope. And so, think about it. I love the look on your face, thank you for that. He's looking back and forth like, well, that's good. I'm trying to think of anything else
Starting point is 00:41:28 that would be more powerful than those stars combining. I'm stuck at Taylor Swift and Travis Kelso. When those stars came together, we all felt it. That was a moment. It was a tectonic shift. So, we discover gravitational waves. That won a Nobel Prize. But more so, we discover gravitational waves using lasers.
Starting point is 00:41:52 Okay? His crumbs connected. His crumbs came together and made a big smorgasbord of science and physics and Nobel prizes for everybody on board. So can you get more amazing than that? I mean, I don't. The detection was essentially in the centenary too.
Starting point is 00:42:14 Yes, it was in 2015. 100 years. 100 years after his gravitational wave papers. Oh man. Yeah. That's Einstein has something to do with that. I mean, his magic. Einstein totally had something to do with that.
Starting point is 00:42:25 Now, Janna, memory serves, Einstein was a big proponent of a unified field theory. And when I first heard that, when I was a kid, field, what do you mean by field? I didn't know that field was synonymous with forces. So we have gravitational force, electromagnetic force, which in its day was the electric force and the magnetic force.
Starting point is 00:42:47 And then the force. And. Ha ha ha. I've seen Star Wars. No, maybe they figured it out. They got the one force, you know. So with the work of Heinrich Hertz and others, we figured out how to combine electricity and magnetism
Starting point is 00:43:05 to make one force. And we take that word for granted, but they used to be two whole separate words. Electromagnetic force. So, Einstein, why did he fail at this? Or what was motivating him? Well, we've all failed at this. So, there's great success in unifying
Starting point is 00:43:22 all of the matter forces, all of the quantum matter forces, electromagnetism, with the weak nuclear force and the strong nuclear force. That's the whole story of matter, done. Completely sealed. There's an outlier. Yeah, but they're not combined. So the electroweak theory is combined. Weak and electromagnetic.
Starting point is 00:43:36 So we went from electricity, magnetism, and the weak nuclear force. Then we got electromagnetism, and then with my guy from my high school. Right. Which guy from your high school? What? Steve Weinberg and Sheldon Glashow.
Starting point is 00:43:52 They and who's the- What was this high school? No, no, yeah. Who was the third one in there? Salam, Abu Salam. Abu Salam, right, that's correct. So the three of them, two of them were classmates in my high school, before me, but in my high school.
Starting point is 00:44:03 Anyhow, they- There was something in the water there Anyhow, they managed to conjoin the electromagnetic force and the weak force, and they called it what? Electroweak. Okay, that's not very creative, but all right, we'll go with it. But it is pretty magical. It says that those are really one force, which is magical. Something that is nuclear ranges
Starting point is 00:44:21 that we do not experience in our everyday life. That's manifesting as separate forces today. You go back in time, there's a point where they were just one expressed force in the universe. So that gives us electroweak, strong force, and gravitation. Yeah, now the strong easily can get in there, even though we don't talk about it very much anymore. What do you mean easily?
Starting point is 00:44:36 If you did that, you'd have a Nobel Prize now. Well, there's something called the Grand Unified Theories, and they have certain failures. There isn't like an ideal Grand Unified Theory, but really, there's nothing barring the possibility of it. I mean it's not. There's no fundamental obstacle to a grand unified theory.
Starting point is 00:44:53 Most people think it's gonna come along for the ride when we do the full unification. So when Einstein said a unified field theory, was he thinking just that or was he also wanna include gravity? He wants gravity. He wants gravity. He wants gravity and it's the same thing he did
Starting point is 00:45:05 when he went from special to general, when he started thinking about quantum mechanics, he wants a quantum theory of gravity. But gravity behaves so differently from the other forces. Because you can think of gravity not even as a force, but as the just falling down the curvature of space and time. It's geometry. It's geometry, it's not really a force.
Starting point is 00:45:22 So that could be a barrier to summing these together. Nobody's ever succeeded at even. So how about Kip Thorne, does he have some ideas here? Oh, well, I mean Kip has endless ideas. Yeah, he does. And I think. Interstellar too. Yes.
Starting point is 00:45:37 I think Kip's ambition is for, yes, a universe that would be completely comprehensible, which would mean we either understand quantum gravity or we understand that gravity is not fundamental. Those are the two kind of choices. That everything's quantum mechanics. Now I don't know that kids. Yeah, quantum mechanics is the most successful idea
Starting point is 00:45:54 we've ever had about anything in the universe. I don't think any prediction has ever failed. No, and to the largest number of decimal points of any scientific theory in the history of time. Whereas general relativity, as badass as it is, we know where its limits are. Like at the center of a black hole is a singularity. It gives you a singularity in the equations.
Starting point is 00:46:12 And I don't know what, that's where you say, where God is dividing by zero. I mean, you're not supposed to divide by zero. Yes, bad. Well, even Roger Penrose, who talked about the singularity in his Nobel Prize winning paper. Nobel laureate of recent years. Even in that paper, he says,
Starting point is 00:46:24 I don't really think this part's gonna survive. He really says, quantum mechanics will probably get rid of the singularity. So it was, but it hasn't, but it hasn't done any of the things it was supposed to do around gravity. It's kind of. More crumbs.
Starting point is 00:46:37 More crumbs. Await the attention of brilliant people. Yes. Either walk among us or are yet to be born. I'm just gonna throw in, because this is very relevant to this, wormholes, which Einstein talked about, the Einstein, Rosen, Bridges,
Starting point is 00:46:50 which ultimately give rise to wormholes, might be involved in understanding that things like black holes and gravity aren't fundamentally real, they're just sort of embroidered out of quantum wormholes, and so it might really be another one of Einstein's crumbs. Embroidered out of quantum wormholes, and so it might really be another one of Einstein's crumbs. He has some embroidered out of quantum wormholes. And not real. Like threads.
Starting point is 00:47:07 So more crumbs from Einstein to come. Wow. Wow. Is anybody, is there, has there? Keep your eyes on wormholes. Is there any other scientist that, is that a Messian eater, so to speak? Has anybody else left? Isaac Newton was badass, too.
Starting point is 00:47:19 Okay. In fact, I think if Isaac Newton were a contemporary of Einstein, he would have done everything Einstein did, and more. Whoa. I'm a Newton guy. Okay. Yeah, you're if Isaac Newton were a contemporary of Einstein, he would have done everything Einstein did and more. I'm a Newton guy. Yeah, you're a real Newton guy. Yeah, you gotta give me something here. I'm a Newton guy.
Starting point is 00:47:31 I mean, calculus is pretty impressive. That's pretty good. Yeah, just on a dare. It's like, why are your orbits moving in ellipses rather than circles? And he said, I don't know, let me get back to you on that. I'm gonna eat an apple. Let me go back, and here's why, and well, how did you do it?
Starting point is 00:47:48 Well, I had to invent integral and differential calculus to show that. Okay, Isaac, we're good. So if you'll indulge me just for a moment, I need to reflect on our conversation. Love me some mathematics. Why? It was early on when I learned Love me some mathematics. Why? It was early on when I learned,
Starting point is 00:48:08 when I wanted to be an astrophysicist, that the language of the universe is mathematics. Now that's an extraordinary fact because we just invented mathematics out of our heads. The history of math is filled with examples of, I don't know how that works, let me invent a way to calculate with it so that I can figure out how it works.
Starting point is 00:48:34 Thus is the rise of arithmetic and algebra and trigonometry and calculus. All of this helps us commune with the cosmos. But what makes it even more extraordinary is you start out with an idea of how the universe works, but you can't manipulate that idea because you're stuck with using only words. If you make a mathematical representation of that idea,
Starting point is 00:49:04 then you can manipulate that idea using the perfect logic of mathematics. And by doing so, you can extend the idea in places you didn't even know the idea could go. Because you're extending it with perfectly logical steps from the map of that idea into the world of mathematics. The fact that that works for us at all
Starting point is 00:49:30 leaves me in awe of not only the existence of mathematics, but of the human mind that took us there. And here we have, in the likes of Albert Einstein, laying down a physical idea of how the universe works, attaching a mathematical model to it, and the rest of us run with that mathematical model. Crumbs from Einstein's plate, leading to Nobel prizes that at some level
Starting point is 00:50:01 should have all gone to him. My boy should have had eight, nine, 10 Nobel prizes. But he's sharing his genius with the rest of us in these, the 20th and 21st centuries. More to come from Einstein's crumbs. And that is a cosmic perspective. So, Janet, thank you for helping out here. Thanks, I'm always glad to be here.
Starting point is 00:50:24 And you have a podcast, tell me. Oh, right, Joy of Why. I love that, Joy of Why. That's a beautiful title. Yeah, Quantum Magazine. So the story is, my friend Steve Strogaetz, who's the original host of the show, it's by Quantum Magazine from the Simons Foundation,
Starting point is 00:50:41 wonderful science magazine. His book was called The Joy of X, Mathematician, and I thought it was a brilliant title, and so the show was originally called Joy of X. Actually, I have a book here called The Joy of Lex, which is all about language and words. There's another one I think called The Joy of Sex. That started it all, yes, okay.
Starting point is 00:50:56 Yeah. Yes, that was the original. So Steve and I co-host the show, it's a lot of fun. We deep dive hardcore physics. Excellent. Biology, computer science, math. And the Simons Foundation from Jim Simons, the very successful Wall Street trader. I think he's the most successful
Starting point is 00:51:13 Wall Street trader there ever was. His original quant. His background in math and physics. A brilliant mathematician and an accomplished mathematician. We still use his mathematical results and theoretical formulas. I took it right on his yacht. It was called the Archimedes.
Starting point is 00:51:29 Nice. That's classy. Jim was the best. All right, I think we did justice to his crumbs here. Oh my gosh. Thanks so much guys, always fun. Yeah, thanks for filling in those gaps and taking us to the next step.
Starting point is 00:51:41 And Harrison, you're on the road with your routine. Yes, I have my comedy magic show. We've been off Broadway, I'm taking it on the road, and I'm doing a standup all over the country. Harrison. HarrisonGreenbaum.com. .com, we'll look for it, all right. This has been Star Talk, the Einstein Crumbs edition.
Starting point is 00:52:01 Neil deGrasse Tyson here, as always, I bid you, keep looking up.

There aren't comments yet for this episode. Click on any sentence in the transcript to leave a comment.