StarTalk Radio - Extended Classic – Cosmic Queries: A Powerful Potpourri
Episode Date: June 15, 2018Neil deGrasse Tyson and Chuck Nice tackle an eclectic mix of your questions that take us from the boiling surface of the Sun to the dark side of the moon. Now extended with more questions on aliens, I...saac Newton as a dinner guest, Panspermia, and the James Webb Space Telescope.NOTE: StarTalk All-Access subscribers can listen to this entire episode commercial-free here: https://www.startalkradio.net/all-access/extended-classic-cosmic-queries-a-powerful-potpourri/Image Credit & Copyright: Bob Franke. Subscribe to SiriusXM Podcasts+ on Apple Podcasts to listen to new episodes ad-free and a whole week early.
Transcript
Discussion (0)
Welcome to StarTalk, your place in the universe where science and pop culture collide.
StarTalk begins right now.
This is StarTalk.
I'm your host, Neil deGrasse Tyson, your personal astrophysicist.
My day job, I'm the director of the Hayden Planetarium at the American Museum of Natural History right here in New York City.
This is the Cosmic Queries edition, which I do not do alone.
I need help.
I've got Chuck Nice.
Hey, Neil.
Chuck Nice, comic, right here with me in studio.
That's right.
Calling from the internet.
Questions.
This is not a themed Cosmic Queries, right?
This is our potpourri.
Potpourri.
I don't even know how to spell that.
Potpourri.
A veritable grab bag.
Grab bag.
A smelly grab.
Potpourri is smells, right?
Yes.
Yes.
Okay.
So this is whatever was left over in the bag after we pulled out the questions.
A smelly grab bag of StarTalk Radio.
It could be themed.
Let's get right into it.
Yeah, man.
Now, I haven't seen these questions.
That's right.
So if I don't know something, I'm going to tell you.
There you go.
And guess what?
That's one of the best things is that you're kind of shooting from the hip on this one.
Totally.
But you never really shoot from the hip, you know?
Because you know what you're talking about.
All right.
So here we go.
This is from Harry Dasori.
All right.
Subject matter, dark matter.
Dark matter, sure.
All right.
Get ready for this one.
By the way, there was a chapter of my memoir called Dark Matters.
Yes.
There's a chapter of my life called Dark Matters.
I'm just saying.
We each have some dark matters.
Everybody's got some dark matters going on.
All right.
Here we go.
Let me finish before you freak out.
Okay.
I'll go.
I've witnessed ghosts and several experiences that have made me a believer in the supernatural or what some would call spiritual existence.
Whose question is this?
This is from Harry Dasori.
Harry Dasori.
Okay.
My question to you, Neil, is can the expansion of dark matter in the universe be the accumulation of souls of all the planets in the cosmos?
Some speculate that soul has weight or a value of weight.
Impossible to prove.
Okay.
Well, so where shall we begin yes i don't know he wants to connect his
personal experiences with ghosts yes with the dark matter in the universe right so what he's saying
is these apparitions that he has experienced clearly they must have some type of mass or weight
could dark matter actually be the accumulation of all such apparitions as the ones that he's experienced.
All the souls.
All the souls.
So a couple of things.
Let's tackle souls for the moment.
Okay.
Back when X-rays were invented, were discovered by Wilhelm Röntgen, who's a German physicist.
In fact, he won the first Nobel Prize in physics in 1900 for his discovery of X-rays.
Soulful people of the day said,
if x-rays can see through matter
and through the human body,
maybe if we x-rayed a body that was dying,
we'd be able to see the soul leave the body.
What?
I don't know.
There you go.
And so they attempted these experiments
and they didn't see nothing.
Right.
Thank God the person was already dying, exposing them to all those x-rays like that.
And in a rare moment, we're thanking God for someone dying.
Right.
Okay.
All right.
So first, there was that.
All right.
Second, the instant you die, which has a fuzzy – we don't really – I tweeted recently.
The next person who is brought back to life after being pronounced clinically dead, it seems like we need to start redefining what dead is.
If you keep coming back because you were clinically dead, maybe clinically dead really isn't dead.
True.
Right.
So the point is there was some movie called 23 whatever.
Remember this movie?
Yes, I know what you're talking about.
23 ounces or some crazy stuff like that.
Yeah, 23 grams.
23 grams.
21 grams.
Right.
It's just BS.
If you're alive and then you're dead and you're on a scale, your weight doesn't change.
Gotcha.
Unless you evacuate your bowels and it spills off the scale
onto the floor.
Plus, most people don't know how much 21 grams
actually is.
It's like the weight of a nickel.
It's not very much.
It's not a lot at all.
I know because of my past use of cocaine.
Because drug dealers were metric long before any American got involved.
How many grams?
Whenever I meet somebody who knows the metric system, I'm like, you've done a lot of drugs, haven't you?
Oh, he sold them.
So the point is, when you die, you have way more than that of just leftover urine and bowel content.
And your sphincters relax and it all comes out of you.
But if you're not careful about how you make those measurements, you could be led to think that you weigh less at death than you did alive.
But so anyhow, so if it's soul in terms of the mass of the soul, if you want to believe there is one, there's no evidence that it has mass.
Right.
That's number one.
We know approximately how many people there have been ever born.
It's about 100 billion, plus or minus.
Okay.
So 100 billion times any number is really, no matter what number you're multiplying it by,
it's going to be small compared with the mass equivalent of the dark matter of the universe.
Now, he's saying the souls of all the planets.
So he's going to have to believe that there's life on other planets that has souls.
Correct.
And so it's the sum of all the souls.
And there's no evidence for that.
Now, one of the things science does that nothing before science did was establish something
that is objectively true.
So if I say, I saw it, it's real.
Well, was it in your head or was it actually real?
Right.
What are the qualifiers of seeing?
Exactly.
Science allows us to distinguish something that's happening in your head from something
that is objectively true that everybody can agree with as well as apparatus that we have
built to make the measurement.
Correct.
So what he needs to do is find the ghosts, put them in a net or something, bring them
to the lab, or get more than himself as witness to these ghosts.
Correct.
Then we can start making measurements.
Until then, we kind of have to sort of, I'm left saying that it's all going on in his
head, and therefore we don't have to explain cosmic forces that affect the birth of
the universe based on what he sees out of his own head right so basically uh in the corporeal world
harry you are out of your mind no in other words that's just to be fair to his question
he may have surely been seeing ghosts right that doesn't mean the ghosts are objectively real.
That's all I'm saying.
Right, exactly.
The human mind is a complex place.
We still don't understand.
We still don't understand.
A whole new field called neuroscience
has been born as we speak.
To determine why we see these things.
To try to handle these things.
Right, right.
So I'm not saying he's not telling the truth
about what he believes he saw.
Exactly.
But whether it's an objectively true thing
is a whole other thing.
It could be true.
It could just be his truth
based upon his drinking of mushroom tea.
The LSD is what made it true.
Or if he hasn't and he does,
that would take it a whole other notch.
You're listening to the Cosmic Queries edition of StarTalk Radio.
I'm here with Chuck Nicecomic, tweeting at Chuck Nicecomic.
That's correct, sir.
You got it.
StarTalk Radio.
We tweet as well at StarTalk Radio.
And find us on the web, startalkradio.net.
We'll be back in a moment. We're back.
Stock Talk Radio, Cosmic Queries Edition.
Chuck, you just reached to the bottom of the barrel,
and you just got whatever was left over.
So we're calling
this the potpourri. The potpourri.
Alright, let's potpourri this. Or as you put it
so eloquently, the smelly
grab bag of StarTalk.
What I think of potpourri is the stuff that smells
nice and you put it in the bathroom where stuff
otherwise doesn't smell nice. That's true.
You don't put potpourri in a rose garden.
So true. Right.
Now you sound like a philosopher, not an astrophysicist. That is. You never put potpourri in a rose garden. So true. Right. Now you sound like a philosopher, not an astrophysicist.
That is.
You never put potpourri in a rose garden.
No one puts potpourri in a rose garden.
Okay.
Then I hear like Chinese chimes, you know what I mean?
Just like, ah, snatch the pepper from my hand, grasshopper.
But yeah, that's awesome.
Go.
All right, here we go.
Adida.
Adida Patil is-
I have to say, you're the worst pronouncer of names I've ever had opposite me on a table.
I am awful.
I'm just saying.
Listen, Neil, I am not-
Somebody has to call your stuff out.
Listen, I'm glad you're doing it, because I am awful.
I got to admit, I'm terrible at this.
All right, but Adida.
Okay, whatever.
Adida Patil says, by the way, she wants you to know that she is 16 years
old and she also wants you to know that she is from india so we are worldwide buddy we are worldwide
okay where does all the energy go when it's all over is her subject matter you've said mr tyson
dr tyson in many episodes that the universe is going from chaos to order and
would finally reach a state of zero Kelvin.
My question is, where does all the energy go?
All the kinetic energy that is present now, what happens to it?
Okay, I don't think I've ever said we're going from chaos to order.
I don't think I've ever said that either.
I think you've always said that the universe is in a state of
extreme disorder.
Disorder and becoming more disordered.
But she knows that we're temperatures dropping in the
universe to an approaching...
There's a mathematical term for it.
Asymptotically approaching absolute
zero. When you're asymptote to something,
it means you get ever closer to it
but will never actually
reach it until you reach infinity.
Kind of like fractals.
Oh, yeah.
There's always detail all the way down through and it's never going to stop.
It's never going to stop.
Right, right.
So it's not exactly like fractals, but the idea that you're hitting some infinity point.
Right.
And then it stops.
Yeah, that's the only thing I could relate it to in my tiny little mind.
All right.
So you say, where is the energy?
The energy is still there.
It's just more and more and more diluted until it's so diluted that it's effectively zero
energy density in the universe.
So we talk about energy density.
Normally, we use the word density.
We think of matter density.
So lead is more dense than paper, right?
And so it makes good paperweights, although we don't use lead anymore,
nor do we even have paperweights.
You know why we don't have paperweights?
No.
Because we don't have fans inside of offices
because we have central air conditioning.
Yes, which is exactly why the register above my desk
keeps blowing the papers off my desk.
Sorry.
Does it seriously, bud?
Yeah.
Well, whatever it is,
it's less than what a fan would have
done back in the day.
So here we have the
universe expands, temperature drops, asymptotically
approaches absolute zero. It's the
density of the energy that continues
to drop. So the energy doesn't go anywhere.
The total energy is the same.
It's just diluted to the place where
it is effectively
zero energy. It is so dilute, just go home.
Okay.
So that's what's going on there.
That makes great sense.
And by the way, the opposite would be true.
In a collapsing universe, the energy density would be going up.
Okay.
And the universe would be getting hotter and hotter and hotter over time.
Okay.
Yeah, that'd be a bad thing.
Yeah.
I'd rather end in ice than in fire.
Okay, cool.
Well, there you go. Okay, cool.
Well, there you go.
There you go.
That's a great answer.
Good question.
All right, this is from Mark Fenimore.
Calls himself the chemistry nerd.
Okay, here it is.
Dr. Tyson, in a freshly brewed cup of coffee, if, I'm sorry, if a freshly brewed cup of coffee was placed into a pressurized, help me out here, adiabatic container and exposed to the vacuum of space
while being shielded from the sun or starlight,
how long would it take for said coffee to freeze?
What is the mechanism for energy transfer in this case?
Well, if it's not exposed to the outdoors, well, what you'd have to do is expand the volume.
It's in a cavity, and if you expand that cavity, the energy has to now dilute.
And there'll be a point where it dilutes physics term that refers to whether you keep pressure constant and change the temperature or keep the temperature constant and change the pressure when you're doing these experiments.
And so, by the way, if you just had a canister there and it was completely insulated, the temperature would never change.
Right.
But you cannot completely insulate something because there's always a molecule or something attached to connect communicating with the one adjacent to it.
And either with light energy or with vibrational energy.
So it's going to cool down no matter what.
Okay.
So the fact is that even if it were completely insulated, the fact is you can never completely insulate something.
Yeah.
Is that what you're trying to tell me, Dr. Tyson?
insulate something. Yeah.
Is that what you're trying to tell me, Dr. Tyson?
So, yes, that as well as if you want to sort of expand the volume, because there'll be
pressure in there because it's a warm cup of coffee.
If you try to expand the volume, what will ultimately happen is the energy density will
drop.
And then at some point, it will actually freeze.
Yeah.
If you keep doing that, yeah.
Right.
Yeah.
You can drop it so low.
But maybe you'd have to evaporate all of the coffee before that happened, and then it's
gaseous, and then the concept of freezing no longer matters.
So as material changes state, it's a fascinating thing, actually, that we don't spend enough
time on in school, I think.
Now, just think about it.
Here's this water, and then you drop the temperature, and then it becomes solid.
Right.
A liquid becomes... Imagine if you had never seen ice.
Just imagine.
I mean, there were people who grew up in the tropics,
never saw ice in their life.
That's right.
And then you just take water, put it in some vest,
some cavity, and you pull it out, and it's solid.
They're not even going to believe you.
He has magic.
If physicists never told people how we do stuff, we would be the gods of our culture.
True.
Because we would have powers that they think would define.
Exactly.
You know what?
It's so funny.
As a quick aside, there is a great show for kids, and it's really trippy, but it's called Adventure Time.
And there's a character.
really trippy, but it's called Adventure Time.
And there's a character, she's a scientist, and she's constantly railing against the people of the kingdom because they believe in magic.
It's awesome.
That's great.
All right, there you go.
So what else you got?
Let's move on to Jeremy Zuccaro.
Okay, I got that one right.
Jeremy Zuccaro.
You can at least try to put a little, Jeremy Zuccaro.
Zuccaro. Yeah, there. Zuccaro. Okay can at least try to put a little. Jeremy Zuccaro. Zuccaro.
Yeah, there.
Zuccaro.
Okay, there we go.
The most interesting man in the world.
Jeremy Zuccaro.
Jeremy Zuccaro.
Go.
Okay.
Could intelligent life have evolved on Earth in the distant past?
There seems to be little evidence to support this idea, but would there be?
But would there be?
What are the odds that this would be missed in fossil evidence?
And is there physical reason why this could not have happened?
I think about this all the time.
Do you really?
Yes.
Okay, cool.
I lay awake at night thinking about this question.
Okay, cool. asked if civilization ended today, how long would it take, given the earthquakes and volcanoes
and other geologic forces on Earth, how long would it take for every trace of our civilization
to be just gone, completely gone, being sucked into the magma of a volcano and coming out
as a fresh rock?
Right.
All right?
So jump-starting the geologic record.
And I've spoken with some
geologists about this it would be billions of years it's not oh yeah it's it's a while because
you have to get every bit we're everywhere on earth not basically you have to get every bit
of land mass deep enough down so that it's completely completely wiped out right and and
and melted down and reshaped into the next round of works. Because the Earth is literally remaking itself.
It is repainting.
Over time, right?
Yes, it is.
And it has to be sort of uniform enough so that there's no trace.
So I said, could there have been an intelligent civilization in the past?
And I think not.
I think not.
First, because it would take a long time to completely wipe them off the map.
I think not.
First, because it would take a long time to completely wipe them off the map.
Second, complex life is an evolutionary trajectory.
Gotcha.
You would not have had single-celled life forms three billion years ago popping into a multicellular intelligent life form overnight, making a civilization and then disappearing again.
You have to track it through the growth of complexity in the evolutionary chain.
And when you do that, you only get sort of big-brained,
if intelligence derives from big brain,
you only start getting big-brained mammals after the dinosaurs are taken out of the picture.
Got you.
And that was 65 million years ago.
Our mammal ancestors scurrying underfoot trying to not be hors d'oeuvres for T-Rex.
Only when T-Rex got taken away did our mammal brain start getting big and become anything
that we call intelligence today.
Gotcha.
So now, when you look at that trajectory, is what you're saying that the Earth has not
been here long enough for that trajectory to have taken place in the past and then been
wiped away record-wise so that we are finding
ourselves in that place again today.
It's a combination of not only that, you would not expect complex neurological organisms,
organisms with complex neurology, to have been around long enough ago, given the time
it would have taken to create such a creature, as the evidence of the fossil record shows.
Fantastic.
So there you have it.
There you go, man.
That's a great answer.
When we come back, more of Cosmic Queries Potpourri edition.
You're listening on StarTalk Cosmic Queries Edition.
Poo-poo-ee.
Shock one?
You're the one that dug all these questions out of the bottom of the barrel
because they didn't fit any other category.
There's a question about whether there's past life on Earth.
I want to add something to that.
Go ahead.
There's a lot of science fiction storytelling
that has sort of aliens helping out our civilization.
Yes.
Like Stargate, for example.
Stargate.
The pyramids came from some...
Well, aliens who came down, helped us build it,
and then left for some strange reason.
Just like, hey, we need to go build some pyramids
on Earth. On Earth. In that spot.
In that spot, and then we're out of here.
Exactly.
That's their sole purpose of coming here.
These humans look like
they need pyramids. Yeah, and they're not mechanical
or anything. They're just stone. No, not at all. Just stone
buildings that we are going to, because we're that
technologically advanced. Let's give
these people some stone triangles to drop in the middle of a desert
and then we're out of here.
Okay.
Yeah.
So that's what I was going to say.
No.
So the urge to think that ancient peoples could not have actually done these great structures.
I mean, the fact is they have the same brain that we do.
We do.
Right.
And so they have less technology, but they're not any less smart.
Right. In fact, some could argue that they're smarter.
So I'm always upset when we want
to credit some intelligent aliens
for stuff that our own species
did here on Earth. Exactly. Give us some
credit, man. It's funny because, you know, my
son, who's seven years old,
and he said, well, how come, you know,
if they didn't have anything
technical back in the day, they could actually create these great buildings and things, but yet we don't seem to be as smart as they are?
And I went, because they didn't have cable television, son.
Exactly.
That's why.
And they had 100 years to build it.
Right.
Exactly.
It's none of this, look, we got to get this done by October.
Right.
No.
Exactly. Pyramids is like, take it, however long it takes. Right. Lifetime got to get this done by October. Right. No. Exactly.
Pyramids is like, take it, however long it takes.
Right.
Lifetime.
So nobody cares.
Right.
Right.
We got a number of times.
That's great.
All right.
What else you got?
Here we go.
This is from our very own somebody here in New York City, Andrew Wood.
Andrew Wood.
And you pronounced his name correctly.
Congratulations.
Yes, I did.
Thank you, Andrew, for having a very easily to pronounce name.
All right. All right.
We have several impact creators on Earth from meteorites.
My question is this.
We have the big holes, but where did the big freaking rock disappear to?
I will not be able to sleep until I know.
I like people who can't sleep because science keeps them awake.
That is good.
So a couple of things.
Probably the most famous hole in the ground is a meteor hole in the ground is in Arizona.
Right.
Near Winslow, Arizona.
In fact, I was just there filming for Cosmos.
Oh, cool.
Yeah, cool.
You can't not go to the crater.
Well, you have to.
It's almost a mile across.
Now, is this the crater that they say may have wiped out everything?
Is this the big one? say may have wiped out everything?
No, no, no, no, no.
This one was a bad day in Arizona when this thing hit,
whatever it was called back then, 50,000 years ago.
Then there's another crater that was found submerged under the Gulf,
found primarily by the efforts of oil drillers trying to find out gravity anomalies,
because if it's oil or is it sand, it sediment and they found this ridge and this ridge is the rim of a crater and that's the one we trace okay
to the dead dinosaurs gotcha and that hit near in the yucatan peninsula near what is now mexico
and i once gave a talk and i said uh but i i said near what is now mexico i said but that's
not what the dinosaurs called it.
And someone in the front row said, yeah, they called it Mexico.
That's actually funny.
It's a Spanish fluent dinosaur.
So, yes, we do have these craters.
And the Chesapeake Bay area we now know from space is a meteor impact.
So a meteor impact created Chesapeake Bay.
Look at that.
Yeah, right there in Maryland.
All right. So there you have it. So what happened to the created Chesapeake Bay. Look at that. Yeah, right there in Maryland. Alright. So,
there you have it. So, what happened to the rock?
What happened to the rock? It turns out that if the
speed of the asteroid,
which is true in every case,
is higher,
so you have a speed and you can calculate
how much energy it has for motion.
We call it kinetic energy. Kinetic is motion.
So, write down that number.
You can calculate that.
Right.
Now you say, what's this thing made of?
Is it rock?
Is it metal?
What's holding it together?
Are there bonds?
There are chemical bonds from one atom to another.
There's a crystal lattice.
There's some forces holding the thing together.
Add that up.
Write down that number.
If the kinetic energy number is bigger than the number that's holding it together, poof,
and the thing hits, hit it, all the kinetic energy go back into the object and it explodes,
vaporizes, goes to smithereens.
And so, in fact, most of it essentially vaporizes.
Gotcha.
And that's called a high-speed collision.
And that's what happens.
That's why you have fragments scattered, but the bulk mass of the asteroid is gone.
Now, if the thing came in slowly, it would just hit and bounce, and then you could get the whole—
And then the rock would be sitting around. was purchased by a metal speculator
because he presumed that the huge object
that made the crater is still buried beneath.
Still there.
Yeah, so he bought the land,
brought out his metal detectors,
drilled boreholes, didn't find a damn thing.
Oh.
Yeah, poor guy.
Because he didn't have your formula.
All he needed was your formula.
It would have saved him a lot of money. Now this dude is just like every dude Because he didn't have your formula. All he needed was your formula.
It would have saved him a lot of money.
Now this dude is just like every dude you see with black socks and sandals on the beach.
With his little metal detector.
So it's the Barringer family, and they actually still own the land.
And so now it's a tourist attraction, and they're making money off a tourist.
Okay, well, at least he got his money back somehow.
Somehow.
So, yeah, so that's what happens in a high-speed impact.
And if those two numbers were different, the object would basically stay in one piece.
Right.
So there's your answer, Mr. Wood.
Look for the rock in the land of smithereens.
Exactly.
You're listening to StarTalk Radio Cosmic Queries, Potpourri Edition. We'll be right back.
We're back.
StarTalk Cosmic Queries.
Potpourri edition.
Chuck Nice.
Hey.
You're reading me these questions.
I haven't seen or heard any of them.
That's right.
That's right.
You have not seen them or heard them, but I have them right here.
Go for it.
Okay. Let's go to John Reitzka.
Reitzka.
Okay.
You know it's right.
John, I'm sorry, Scott. Right. Scott. Okay. You know, it's John.
I hope I'm sorry, John.
So.
Okay.
Subject of the tides.
And this is kind of something that we've touched on.
Oh, me and tides go way.
Yeah.
You and tides.
You are the, you are the veritable prince of tides.
See what I did there.
Did you see what I did there?
Okay.
I thought it was the king of tides, but okay.
Okay.
You see what I did there?
Okay.
I thought it was the king of tides, but okay.
Fine.
Okay.
I've heard Neil mention in multiple episodes that the gravitational forces of both the moon and the sun combine during a full moon to create the highest tides on Earth.
It seems to me that they should cancel each other out, being that the masses are on opposite sides of the Earth. It also seems that the highest tide should be during the new moon because the moon and the sun are both
on the same side of
the Earth.
I could look up the answer, but I just
love hearing Chuck Nice's take on the questions.
Did he really say that?
He did really say that!
Oh my God!
Alright, so
listen, basically what he's saying is when the moon and the sun are on the same side,
is there a greater pull?
So here we go.
You ready?
Go ahead, please.
All right.
So let's forget the sun for the moment.
All right.
Let's just have Earth and the moon.
The moon raises tides on Earth.
Gotcha.
And there are only two things that affect that.
The mass of the moon, which isn't changing. Right. And the distance the moonides on Earth. Got you. And there are only two things that affect that. The mass of the moon, which isn't changing.
Right.
And the distance the moon is from Earth.
Right.
Those are the only two things that can affect the tides that the moon raises on Earth.
Okay.
Now, the moon's orbit is not an exact circle.
It's like a flattened circle, an ellipse is the official term.
You can think of it as an oval.
And so occasionally the moon is closer to the Earth.
It'll raise slightly higher tides. Occasionally the moon is closer to the earth. It'll have raised slightly higher tides.
Occasionally the moon is farther, raised slightly lower tides.
And that has nothing to do with what phase the moon is.
The moon's tides on earth are the same for every phase from new moon crescent, first quarter gibbous, everybody.
Because the moon is the same size.
The moon is the same damn thing in the damn sky.
Right.
Okay.
All right.
So now, now bring in the sun. Okay. The sun is trying to damn thing in the damn sky. Right, right. All right, so now, now, bring in the sun.
Okay.
The sun is trying to raise tides, too.
And it's a function of how far are we from the sun and how much mass the sun is.
It's trying to do this on us, too.
But it turns out its strength of tides is only about a third as strong as that of the moon, it turns out.
Because it's so far away.
So far away.
Distance makes a big deal with, it makes a big difference with tides. Gotcha. Because the tidal strength varies as the cube of the moon, it turns out. Because it's so far away. So far away. Distance makes a big deal with, it makes a big difference with tides.
Gotcha.
Because the tidal strength varies as the cube of the distance.
Gotcha.
If you're math fluent, you got that.
I know what you're saying.
All right.
So it is directly and proportionally tied to the distance.
Yes.
Okay.
To the third power of the distance.
Third power.
All right.
So if you're far away, it's way less than if you're nearby.
Gotcha.
So now watch.
If the moon's tides align with the sun's tides, you have high tide, higher than at any other time.
If the moon's tide is at right angles to the sun's tides, they're each trying to bulge at right angles to one another.
That's where they cancel out.
Gotcha.
Okay?
At right angles
And I think they call it the neap tide
You'll still get a slightly high tide
But it's not as high as at full moon
Or at new moon
And here's how the tide works
So you have the moon and you have earth
The moon is pulling harder on the side of the earth
Closer to the moon
Than it is at the middle of the earth
And it is pulling harder At the middle of the earth Than it is pulling at the far side of the Earth closer to the Moon than it is at the middle of the Earth.
And it is pulling harder at the middle of the Earth than it is pulling at the far side of the Earth.
Right.
Okay.
Because it's farther away.
It's farther away.
Because it's, like we said, it's distance.
It's a distance.
It's a distance thing.
Thank you.
And so now you are a squishy pool of water.
The side of you closest to the Moon is being pulled most, and the side of you farthest from the moon is being pulled least.
So all this gets stretched out.
That's all it is.
It's a big stretching game.
Gotcha.
By the way, the solid Earth has tides as well.
But that doesn't manifest because it's a solid thing that's changing.
But we see tides never come in and out.
The bulge is always there in space,
and it's Earth turning inside the bulge.
So in fact, when you see-
That sounds so dirty.
Oh my God.
So when you, if you're on the beach,
you say, here comes the tide.
No, the tide was there in space,
and you are on Earth being turned into it.
Into it.
Into the bulge of the tide.
Wow.
I know, I know, know i know so now watch
so now so the the the moon stretches out the water near side far side right the sun stretches
out the water near side far side so a new moon or full moon everybody's lined up everybody's
stretching it out there you have it it's all just all just all just It's basically a love triangle between the sun, the moon, and the water.
However, when the triangle is at its finest, it makes a straight line.
Ah.
That's where you want your highest triangle.
That's the highest triangle.
I mean, the highest bowl is the straight line triangle.
That's right.
Yo, that's hot.
You got it.
You're still listening to StarTalk Radio Cosmic Queries.
I'm here with Chuck Nice.
We'll be right back.
We're back.
StarTalk Cosmic Queries.
Potpourri edition.
But we're in the final segment, which means what, Jack?
Lightning round.
Lightning round. Because I take so long answering the questions that we've got to pile them all, the ones I didn't get to in the last segment, and I'll blow through them soundbite style.
Okay.
All right?
Are you ready?
Let's do it.
And that's the sound you'll hear at the end of the question.
No, at the end of the answer.
End of the answer.
Go.
Amputees in Space from Jeff Lowe wants to know,
hey, just curious to hear your thoughts about whether amputees in space would do well
since there's less muscles to atrophy.
I'm also curious to hear if there would be effects from zero G on organs.
You know, after all, the heart is a muscle, but it's constantly working even in space.
Yeah.
So amputees in space, you're not walking anywhere.
So in fact, the space walk, you're not walking.
It's called space floating.
It's space floating.
So in a way, you don't really need your legs.
So amputees, I think, would do very well space walking.
Your organs are sort of suspended in your body.
They're not loose to float around
and get out of alignment if you go into zero G.
Plus, when you lay down horizontally,
your heart does not work against gravity.
It pumps blood horizontally.
And that's like it not working against gravity.
So your heart would be just fine in space.
Okay.
But it was not obvious.
In the early days,
we didn't know whether you could swallow in space.
Hmm.
Does your saliva know to go down your throat?
Turns out your body does a good job pushing liquids wherever they got to go.
Next.
Go.
Here's one.
How about Adam Caspi?
You're a biggest fan in Israel.
That's what he said.
Okay.
Okay.
From my limited understanding, nothing can travel above the speed of light.
Why does light travel at exactly that speed?
I understand that it can't travel faster, but why not slower?
Even a small amount, like two meters per second.
Light does travel slower when it goes through anything other than a vacuum.
Ooh.
Oh, snap.
Yo, Adam.
Light goes slower when it enters our atmosphere,
which is why when you see sunrise,
it's not actually risen yet.
It is still below the horizon
because when it changes medium,
the light slows down and it refracts,
showing you the sun before it is actually risen.
Light is at its slowest through diamond.
It only goes 40% as fast as its speed in a vacuum through diamond.
That's why there's all this internal reflection in your ring,
and it looks radiant because the light internally reflected
multiple times before it came out,
looking like the diamond itself is giving you light.
Oh, thank you.
Well, there you go.
Yo, that was hot.
That was hot. Yeah. All right, here we go. This one from Luke Schlonigan. Well, there you go. Yo, that was hot. That was hot.
Yeah.
All right, here we go.
This one from Luke Schlonegan.
Luke.
Yes, go.
Luke.
Aliens.
On your aliens episode, you said aliens the size of a solar system couldn't exist because
it would take too long for a signal to travel from one point of the brain to another and
for the alien to react.
But what if it did not have a centralized brain?
What if the decision-making capabilities were spread throughout?
In other words, a couple little brains around that alien head.
Okay, I didn't say life could not exist.
I just thought it would be a really clumsy form of life.
If it stubs its toe, it would take 10 hours to respond to that fact.
Or if something starts eating it, it won't know until it's way too late.
It's just not an effective size to be life.
If you're competing against the speed of light for you to communicate signals across your body.
If it has regionally controlled centers, brain centers, then is it one organism?
Oh, snap!
There you go. Oh. I question whether it is in fact one organism? Oh, snap! There you go.
Oh.
I question whether it is in fact one organism.
Luke, there's your answer.
Okay.
All right.
Next.
Cody in Iowa wants to know, in an extremely unlikely scenario, if you were to be touching
or right next to a micro black hole at the moment of its formation. What would happen?
Bad for you, good for the black hole.
Yeah, if any part of you starts to enter the black hole,
the black hole will just eat whatever part of you it touches.
That's all.
Eventually, you are gone.
You're gone.
And the black hole burps.
No, it doesn't even burp.
Yeah, black hole one, human zero.
There you go.
Next.
All right, Cody.
You are delicious to black holes.
All right.
This is from Matt Holesley.
The sun.
How loud would the sun be from the earth if there was a way to transmit the sound through space?
I don't know what the hell that means.
Okay.
That's why I couldn't read the question.
Okay.
So if you ever heard a pot of water boiling on the stove.
Yes, I have.
Okay, that's water and it says, okay, the sun is boiling as well.
Okay.
It's roiling, boiling, convecting.
Convection is the scientific word for boiling.
Right.
The sun is boiling like it's nobody's business on its surface.
It would be the loudest boiling pot of water you ever heard. If somehow you can
deliver that sound
through the vacuum of space to us.
And that'd be kind of cool to listen to what the sun was doing.
It would sound like boiling oatmeal.
Boiling oatmeal. But really, really loud.
Answer? Thank God
we can't hear that.
Real quick. Ten seconds. Okay, we've got ten seconds
and, oh my God, here it is.
If there were a civilization that lived only on the far side of the moon, how hard would it be for it to detect the existence of the Earth?
Oh, they would never see Earth because Earth is never in their sky.
But they would know somebody was up to something because we've sent spacecraft in orbit around the moon.
And the most famous photo ever, Earthrise,
was a spaceship coming around the backside of the moon.
They would have said, uh-oh, we are not alone in the universe.
Sweet.
So would the far side moon dwellers say,
you've been listening to StarTalk Cosmic Queries.
You're listening to StarTalk.
Stay tuned for another segment.
Welcome back to StarTalk.
We are in extended Cosmic Queries edition.
Chuck.
Hey, Neil, That's right.
What do you have for me?
All right.
You know what?
Since this is an extension, why don't we start off as we normally do?
Is this themed or is it a galactic gumbo?
I don't know.
Is it gumbo?
I think we're going to do the gumbo.
We're going to do the gumbo.
Okay.
Galactic gumbo.
I guarantee.
All right.
What do you got?
Maybe we have a little etouffee.
Etouffee.
I love etouffee.
Cosmos.
All right.
What do you have?
All right.
Here we go.
This is a Patreon patron, Kyle Yoakum, who says.
Once again, because they paid money to be first in the question list.
That is correct.
How crass of us.
That's right.
Okay.
We are not above being whores.
All right, here we go.
Kyle says this.
Dr. Tyson, if Isaac Newton, your man, was to see us today and all the science that we have discovered since his passing,
what discoveries might he be most interested in?
And what specific areas of study would you guess he would want to
continue working on?
Believe it or not, I think about this all the time.
Get out.
All the time.
At least weekly.
At least weekly.
Wow, Kyle, look at you.
I think of Isaac Newton as a dinner guest.
But then it gets real, and then it's like, okay, that was a bad idea.
Okay?
Okay, so Isaac Newton walks in.
I say, Isaac, would you like to bathe right
now? Okay. First of all, because back then there was no, okay. So we get that out of the way.
Okay. So then I, I say, um, uh, would you like to go for a drive? Uh, a drive in one? I said a car.
What's a car. Right. So then I say, what's a car? So then I say it's a horse-drawn
carriage without the horse. And they say, well, how does it operate? Well, it operates on energy.
Well, what's energy? Energy was not formally defined at the time of Isaac Newton. That would
take another hundred years before we understood energy. Well, where do you get the energy? We get
it from liquids. What kind of energy is in that? Chemical energy. How do you get the energy? We get it from liquids.
What kind of energy is in that?
Chemical energy.
How do you get, what is chemical energy?
Well, it's bound in the molecules.
What's a molecule?
This would just go on and on and on and on and on and on. There's energy bound up in the molecular state.
What is, and it would take, he's a fast study,
don't get me wrong, but you can't just ask him a modern question.
Because then I would show him my iPhone, and his head would explode, okay?
I would show him the calculator on the iPhone,
where he could have then spent seconds doing what he took years calculating, okay?
In his life.
And that's just one app on the iPhone.
So poor Isaac.
I'd need a psychiatrist with me just to help the guy out.
And wait till you sell him porn on your phone.
Oh, no.
Oh, my God.
Actually, he never married, and as far as we know,
had no meaningful amorous relationships and was mostly
misanthropic.
Oh really?
He was probably asexual.
Most likely asexual.
Yeah, yeah.
When he had energy to discover.
No wonder he discovered all this stuff.
Oh my god.
It was just built up sexual frustration.
It's all pent up.
Gotta discover calculus.
Exactly.
We're looking at truth as energy.
I need to calculate a way to get laid.
No.
Oh, wow.
Yeah, yeah.
He never married, never had any close male or female friends.
Wow.
Yeah.
There were some letters he wrote.
Some people might think he might have been gay.
But nonetheless, even if he was gay right he still wasn't it was
not right it was not you know the man of the night yeah right exactly but so anyhow so there's that
but let's catch him up to speed i would say uh i would hand him the dark matter and dark energy
problem right i said look dude we've been at this for 50 years fix it go ahead and solve knock it
out buddy knock this one out here's a pencil's a paper. Here's a computer when you figure out how to use a computer.
Have at it, okay?
That's super cool, man. Hey, what a great
question, Kyle. That was really cool.
And the answer is, in
modern times, Isaac Newton is a dumbass.
Okay. No, I'm joking.
Of course. Wow, that's a... I like the dark
matter idea. That's cool. Yeah, yeah. Dark matter and dark energy.
Yeah. Alright. Let's go to
Stephen Humphrey on Facebook who says says what does that crazy looking globe on neil's table depict oh yeah well i have a
this globe that might be sitting behind me where i'm seated right now right uh this is a brass
globe right that is sculpted by paul manship who is the same guy who sculpted Prometheus, who oversees the skating rink in Rockefeller Plaza.
In Rockefeller Center.
Right.
Yeah, yeah.
Yeah.
And in fact, if you look at the base of this globe, there is a recumbent figure which evokes the recumbent Prometheus at Rockefeller Center.
Right.
So this globe is a perfectly spinning, functioning globe,
and it has all 88 constellations
in Art Deco relief.
Oh!
Etched onto them.
Wow.
Yeah.
There are two, as I understand it,
there are two in the world.
One is owned by,
was it Acres?
I forgot his first name.
The former CEO of IBM.
Okay.
Who paid for an exhibit where this appeared.
This was on the exhibit floor of the Hayden Planetarium 40 years ago.
In fact, I remember it when I came here as a kid.
Wow.
But now we're not about constellations anymore, but it's still a brilliant work of art, and I get to put it in my office.
Nice.
Wow, what a cool – hey, Stephen, thank you for that.
Man, there's only two of those globes
in the world, and you have one of them.
Well, I mean, the museum.
I don't...
Oh, it's in your office. It's yours.
And of course, I can
tip this. This tips on angle.
So it's a
mechanically functioning sphere.
Fantastic. Just to be clear,
this is 1934,
so Art Deco was a very prevailing thing at the time.
Very much so. Especially here in New York
when you look at all the architecture here in this
city. Chrysler Building.
Great many... Rockefeller Center itself.
Absolutely. The whole place. Very cool.
So Chava Bello on
Instagram wants to know this. Do you foresee
space hotels with green hookers?
Really?
Come on.
Green hookers.
So this would be not just interspecies sex. We're talking about inter-life form sex.
I don't know.
I mean, people, usually the first thing that happens with a new invention is people try to figure out how to have sex with it.
That's so true.
And so I will not preclude this as a thing that could one day happen.
Right.
And clearly this derives from Captain Kirk.
I was going to say Kirk.
Captain Kirk.
Kirk beat you to it.
This is in the 1960s.
That's right.
Somehow it was okay for Captain Kirk to
be banging green aliens. That's right.
Okay? And it's always, it was always
um...
What is
kiss? Oh, that's an old Earth
emotion that we show when we have affection.
Oh, let's do that again. Exactly.
And then they kiss again and then they fade to black
and they go to the next scene. Right. So you know
he's getting some alien booty. You know it.
Alien booty.
That's right.
So I don't see why not.
I mean, if we have a fully – if all life forms are visiting at the local bar, like
in Star Wars.
Like in Star Wars.
Like in Star Wars bar, why wouldn't it be?
Yeah.
I'm not going anywhere.
Anything green.
Okay.
I'm going nowhere. If it's green, I'm staying way away from it green. Okay. I'm going nowhere.
If it's green, I'm staying way away from it.
That's all there is to it.
It could be that it undergoes photosynthesis.
It never has to eat.
Wow.
That'd be really...
Yeah.
Think about it.
Just think about this, Chuck.
Mm-hmm.
Okay.
I'm thinking about it.
If you are not a plant on this earth...
Right.
...then you have to kill something...
To eat.
...for your own nourishment.
That's right.
Other than that, you got to eat something else. Right. No, you have to kill something to your own nourishment that's right other than that you got to eat something else right no you have to kill something right for your own nourishment
if you're an alien where everybody's getting their energy from their local star and they come to earth
how barbaric we would look to them that's true think about that yeah uh and if they're green
i'm not having sex with them. Regardless.
Okay.
All right. Here we go.
Juan Garcia from Facebook says.
Juan Garcia.
Juan Garcia.
What a great name.
Did the meteor that killed the dinosaurs hit hard enough to spread life around our solar system?
Wow.
So would the debris or the detritus have escape velocity?
Yes.
Get out.
Yes.
Is that real?
Yes.
Oh my God.
Did you call it detritus?
Detritus, yes.
Why?
Okay.
Is that okay?
I think more of flotsam and jetsam.
Oh.
That's fine.
Look at you.
That's fine.
That's cool.
We're cool.
We're cool.
All right.
So if you only know flotsam and jetsam from from the Disney movie The Little Mermaid, Flotsam is stuff left over after your ship was torpedoed that floats, and Jetsam is stuff that you threw overboard so that you tried to not have that fate.
Exactly.
Right.
So, yeah, so that asteroid would have easily thrust Earth rocks with enough velocity to escape Earth.
Wow.
So here's the thing.
Go ahead.
Here's the thing.
I'm listening.
I'm listening.
I'm listening.
The moon doesn't have weather.
It doesn't have plate tectonics.
Right.
The moon is a record of anything that once hit it.
Right.
There may be Earth fossils on the moon.
From before we had good fossils to get a record of what was happening here.
That's super cool. Oh. That's super cool.
That is super cool.
Yeah.
So it's called panspermia.
And so life may be more similar than we might otherwise think.
Interesting.
So, and well, then that begs the question, is it very possible that the life here on Earth was seeded from some other cosmic entity?
If we were, it would likely have been Mars, which means all humans are descendants of Martians.
Ooh.
Yeah.
I like that.
Because Mars was wet and fertile before Earth was.
And don't go there, Chuck.
Okay.
So before Earth was, I saw your facial expression.
I know.
Okay.
So if there was any life transfer, panspermia,
it would have been from Mars to Earth.
Okay.
Initially.
Oh, that's cool, man.
That is super cool.
Mars had running water.
Right.
Yeah.
Wow.
Hey, Juan Garcia, what a great question.
All right.
Let's go to Liam.
Last question.
Last question.
Oh, okay.
Okay, good.
This is Liam Chromatic World Leverford.
That's a name?
What a name.
Liam Chromatic World Leverford from Facebook says, chromatic world lever for it is that's a name what a name liam chromatic world lever for it
from facebook says i've heard that with the james webb telescope that is supposed to be up uh be the
next step up from the hubble that we could potentially see the big bang but i haven't
been able to explain this to anyone because i really don't understand it that's a good reason
yeah for not being able to explain something so So how would you see the Big Bang?
No, not with this telescope.
You would see what this will enable us to do is specifically tuned to detect galaxies being born just after the Big Bang.
Right now our telescopes aren't sensitive enough or tuned properly to see that phenomenon.
So those galaxies are emitting copious amounts
of blue and ultraviolet light.
Okay.
But that light is coming from such a distance
that the expansion of the universe has redshifted
that light deep in the red and infrared part
of the spectrum.
So the James Webb telescope is tuned to the
infrared to see light that started
out as ultraviolet in the
formation of galaxies. We are ahead
of...
That is phenomenal!
We are there. That's genius!
By the way, you can also see things that
just happen to be giving infrared light, like
star-forming regions of the galaxy
and this sort of thing. Nurseries. Nurseries, exactly.
Right. Exactly. Newly born hatcheries, exactly. Right. Exactly.
Newly born hatcheries.
But, yeah.
But it's not designed to see the Big Bang itself.
Oh, cool.
Oh, man, that's fascinating.
Yeah.
All right.
Well, thank you for that question.
Chuck, I think we ran out of time.
Oh, man.
Oh, okay.
We got to call it, but that was Good Actor Gumbo Edition.
Oh, that's right.
Extension.
There you go.
That's right.
Guarantee right now.
Guarantee. I'm Neil deGrasse Tyson. Combo edition extension. There you go. That's right. That won't be right now. That won't be.
I'm Neil deGrasse Tyson.
I've been with Chuck Nice.
As always, we bid you to keep looking up.