StarTalk Radio - Hormones on Steroids with Dr. Aniket Sidhaye

Episode Date: August 12, 2022

How do hormones affect us? On this episode, Neil deGrasse Tyson and co-hosts Chuck Nice and Gary O’Reilly explore the body's endocrine system, steroids, hormones, and how we can hack it with an endo...crinologist, Dr. Aniket Sidhaye.NOTE: StarTalk+ Patrons can watch or listen to this entire episode commercial-free here: https://startalkmedia.com/show/hormones-on-steroids-with-dr-aniket-sidhaye/Photo Credit: quimono, CC BY-SA 4.0, Pixabay through Creative Commons via Wikimedia Commons Subscribe to SiriusXM Podcasts+ on Apple Podcasts to listen to new episodes ad-free and a whole week early.

Transcript
Discussion (0)
Starting point is 00:00:00 Welcome to StarTalk, your place in the universe where science and pop culture collide. StarTalk begins right now. This is StarTalk Sports Edition. Neil deGrasse Tyson here, your personal astrophysicist and co-host of this podcast. I got with me my two other co-hosts. Chuck, nice. Chuck, how you doing, man? What's happening, Neil? I'm hot. I'm doing hot. Okay, professional, again, well, it's summertime. Let it be. No, I was actually just complimenting myself, Neil. No. I'm glad you feel that way about yourself. Okay. This is the first step towards recovery.
Starting point is 00:00:45 Exactly. Professional stand-up comedian, we love you here. And I love you as my co-host. And we also have the only one who gives this podcast its authenticity is Gary O'Reilly, former soccer pro. Gary, always good to have you, man. Oh, it's a pleasure. It's mine, Neil.
Starting point is 00:00:59 Thank you. Also, professional sports commentator, which I only learned very late because I was distracted by your soccer talent. And I was not thinking of you in any other way. Plus, there's a wiki page on you in case people want to see your legs. Yes. Don't do that. Check out those gams, people.
Starting point is 00:01:18 You got to see Gary's gams on the wiki page. Back in the day. My boy got his soccer wiki page. That's cool. Sexy boy, I the page. Back in the day. My boy got his soccer wiki page. That's cool. Sexy boy, I tell you. We're loving it. Now, Chuck. So what we're going to talk about today
Starting point is 00:01:32 is the endocrine system. Oh my gosh. We are long overdue for a show on this subject. I remember in high school learning about biology. You know, there's a heart and a liver and lungs and all that. You have skin and blood. And then I learned about the endocrine system. I was like, oh my God. It's like, we don't just have stuff in our body. We have chemistry going on in our body. And so obviously none of
Starting point is 00:01:58 us have this expertise. We had to reach for it as we always do. And I think we always do really well. And Gary, so set up the table here. What do we have? Oh, with pleasure. So we started this show by asking a simple question in a production meeting. How do anabolic steroids work in the human body? And then as you were just saying, in the human body, you've got a variety of systems, a digestive system, respiratory system, immune system, and we know pretty much all about them. But the chances are we don't really know a lot about the endocrine system, what it does, how it does its thing, what happens if it goes wrong. Can we tweak it for our own good, say with anabolic steroids? And
Starting point is 00:02:37 how can we make that work? And from that initial question, we got a whole load of wow. work? And from that initial question, we got a whole load of wow. So when you say tweak it, you mean how can we game it for our own? That's what you really mean there. So this is the element of like, you know, okay, but everyone's looking for advantage. It's a competitive world, sports competitive by nature. So what if, but we needed to know more about how the whole structure works. And that's the takeoff point for this show. Of course, we needed an expert, and I'm pleased we found this young gentleman. Dr. Aniket Siddhai from John Hopkins Medicine, where he is Program Director for Endocrinology and Metabolism Fellowship. He's also Associate Professor of Medicine and expert in cystic fibrosis-related endocrine disorders. So, having said all of that, let's meet the good doctor.
Starting point is 00:03:33 Hello. Aniket, welcome to StarTalk. Thank you very much, Neil. I'm excited to be part of this conversation and so glad to hear you all are interested in the endocrine system. Oh, my gosh. You're so young. Oh, my gosh. You're so young. Oh, my God. Can I pinch your cheek?
Starting point is 00:03:47 Can I do that? Yeah. There's a lot of jealousy this side. We'll put some old farts on here. You know, when I went for my jog this weekend, I didn't feel that young. Oh. You know, if you're an expert on the endocrine system, you should never feel any way that you shouldn't.
Starting point is 00:04:05 I'm thinking. that's just me. I don't know. So could you just start us off? I want our audience to be just as mind-blown as I was when I first learned what the endocrine system does. So you just give us like a three-minute overview. I know that's not much time, but you can fit it in, I'm sure. You're also a professor. Please sum up all of your academic findings and career in 90 seconds. So what do you have? You know, in a way, it is a system by which one part of the body talks to the
Starting point is 00:04:39 other, but to maintain balance. And the way it does this is by the secretion of hormones. And the definition of a hormone is pretty simple. It's a substance that's secreted in one part of the body. A chemical. It's a chemical. Yeah, it's a chemical. And it goes to another part of the body and tells that part of the body what to do. But what's really important about the endocrine system is that in almost all of the hormones, there is a feedback loop that involves control. And that's probably what helps it maintain balance in the body. So all of the hormonal systems have this sort of, we call it homeostasis or balance effect on whatever it is that they're supposed to be regulating.
Starting point is 00:05:22 I'll give the example of insulin because I think a lot of people know about insulin and diabetes and blood glucose. So, insulin is the hormone that helps maintain blood glucose levels in a very, very narrow range. And the way it does this is super interesting. So, Aniket, that glucose, that's just one of the sugars, right? They all end in O-S-E, last I checked, right? That's absolutely correct. Like fructose and mannose and galactose. Yeah, galactose and... Galactose, you should love that one, Neil.
Starting point is 00:05:52 Well, by the way, it's not an accident that the Milky Way galaxy, the very word galaxy comes from its reference to milk and the Milky Way and lactose and all this. Yeah, it's very related from the Latin and, of course, Roman times, but ancient Rome. But go on. This is not about astronomy. This is about…
Starting point is 00:06:12 Right, right. All right. Yeah, so glucose actually stimulates the pancreas to make insulin. So as the glucose levels rise, the pancreas has this mechanism of increasing the amount of insulin that's secreted. And then that insulin goes to muscle and fat predominantly, but other tissues as well. And it tells those tissues to take up the glucose from the bloodstream, thereby returning the glucose back down to the normal range. As the glucose comes down, the insulin levels come down as well. So
Starting point is 00:06:40 you can see it's this mechanism by which the glucose is the stimulator. The insulin goes up. Once the glucose comes back down, the insulin comes back down. What you're saying is the pancreas doesn't know better. Because if it did, you wouldn't have all these extra overhead steps for all this to work. Yeah. I mean, I guess it would be great if it could just get it done. But no, that's the whole point of what you're saying, right? It's the messaging between the two that keeps the balance.
Starting point is 00:07:06 Yeah, but Chuck, that's another point of failure. A possible failure in the human body. Isn't it? That's because you're looking at it from the standpoint of some guy who shoots crap into space. I'm just saying, if we have points of failure, I want to
Starting point is 00:07:20 know about it. I want to reduce them as much as possible. And you're telling me you have an endocrine system that tells something else what chemical to put in and how to take it out. And that's too many people in the command chain. Well, you know, of course, you know, when this system fails, we get diabetes. Yeah. So to your point about points of failure. Yeah.
Starting point is 00:07:40 All right. So, doctor, is there a command center? Is there some ultimate control center for all of this endocrine system? Or is it systems within systems that manage each other? Or can they cross out into other systems? So, they can definitely crosstalk with other systems. But in terms of a command center, there happens to be one organ that controls multiple different endocrine systems. The brain. Yes.
Starting point is 00:08:07 Just below the brain is the pituitary. Pituitary gland? And that unit over there controls how your body makes stress steroids that help you respond to stress, like cortisol. It helps you make the sex steroids. Oh, right. So testosterone. Yep, there you go.
Starting point is 00:08:25 Just for you, Chuck. Yeah testosterone. Yep, there you go. And... Just for you, Chuck. Yeah, of course, of course. Right. And for all of those who have kids and want them to grow, it helps regulate the growth hormone system. So there is one gland
Starting point is 00:08:37 that happens to control multiple different systems. So what does the hypothalamus do? Oh, so super, super question. So the hypothalamus sits above the pituitary. The hypothalamus sits in the brain, and it sends the signals down to the pituitary to make their hormones. I told you.
Starting point is 00:08:54 You see? You see? You know what? I'm starting to agree with Neil there. This is a house of cards, Mark. Our bodies are stupid. This is a house of cards. Oh, Mark. Our bodies are stupid. This is a house of cards. Oh, man.
Starting point is 00:09:05 So we've got all these little moving parts that are command centers, but are there different types of cell signaling that take place, or is it all one mode, or does it come with a variety of settings? So this gets to how do hormones actually act. And they all act by interacting with a receptor. And that receptor either goes into DNA and regulates genes. And I know you guys have had people come and talk about genes and gene expression. Or that receptor helps change predominantly how proteins work.
Starting point is 00:09:42 And so they all interact with specific receptors, and that's how you maintain specificity in each system. So do old wasp families in the United States have blue genes? Oh, Neil. That's not a mandatory answer. I'm sorry. It's so much better than Wranglers. Oh, my. Blue blood
Starting point is 00:10:08 flowing through the veins. Definitely never catch me in a pair of Levi's. Only all my blood runs blue. Exactly. So, what is epigenome? Because you talked about
Starting point is 00:10:19 messaging for DNA. So, what is epigenome and epigenome communication? Sure. So, the gene is a code to make proteins. But why should a particular gene be on or off? It turns out that our genome can have marks on it. There are other systems that can say, hey, you know what? I want this gene to be turned off. And they mark the genome in a certain way so that genes can be turned on or off. And so there are many different types of these marks, but there are signatures for
Starting point is 00:10:52 genes that are on versus off, and that is often found in the epigenome. And so hormones, for example, can regulate that. And by the way, Aniket, when I was in college long ago, I took a computer science class where we learned about the role of the dip switches on the backs of the computers where you can change certain modes of operation. And that became a very useful reference when people were talking about gene expression for about like five years until those computers weren't around anymore. But when you say turning them on and off, I think of the back of the computer where you had these switches and you'd manipulate them. But you had to know what you were doing. Does this epigenome become affected by environmental aspects and influences such as your environment, pollutants and things? Yeah, I think that there is you know sort of growing interest in that um and um those types of studies
Starting point is 00:11:52 have been done sort of in cells right but you know then you have to take the next step of saying okay let's expose lots of people to a pollutant and then look at the epigenome and the answer is... Or not. Yeah, it does. Or not. Or, yeah, right. If you want to connect an ethical study. Yes, thank you. And then see.
Starting point is 00:12:12 But these occur naturally, right? Because there are flight attendants who are exposed to smoke, for example, and other people who are not. In the day. In the day. In the day.
Starting point is 00:12:21 Not anymore. And so you can then look and look at their genomes and see if their epigenetic changes occurred. And there's a lot of evidence that that has occurred. Yeah. Mm-mm. Yeah, so that's the hormonal system in a nutshell, I guess.
Starting point is 00:12:37 So just when you mentioned the pituitary gland, I'm reminded that some of the physical conditions that make people short or extremely tall directly come out of failures of the pituitary gland, right? I heard the term, maybe we don't say it anymore, pituitary giant. Is that still a term? Yeah, there's a term gigantism that's used. And that's when there's too much growth hormone when kids are growing. And then they grow up to be very, very, very tall. But you can also have extra growth hormone made after people start growing.
Starting point is 00:13:18 Right. And then they don't get taller, but other parts of their bodies grow. So they have jaws that are a little bit bigger. Their hands become kind of wide. Barry Bonds. He was a different kind of bitch. That's a different, that's a different, he was from another planet. We'll save that for section three.
Starting point is 00:13:40 Yeah. Go back to the sound signaling modes. You know, you said about the computer switch on the back, Neil. I mean, are there notes of neuroendocrine and autocrine modes for signaling, doctor? Yeah. So, what that refers to is neuroendocrine is simply like the hypothalamus and the pituitary make a hormone. They go to, for example, the adrenal gland, tell it to make more cortisol. Okay.
Starting point is 00:14:03 Right? They go to, for example, the adrenal gland, tell it to make more cortisol. Okay. Right? But autocrine is within a single sort of tissue system where a cell makes a signal. Let's call it a growth factor, for example. And it'll go next door to a cell. So it doesn't have to enter the bloodstream and travel to some other place.
Starting point is 00:14:26 Entering the bloodstream and traveling is like the traditional definition of a hormone. But autocrine is just, you know, talking to your neighbor and nudging them to do something a little different. So it's shopping local is what's happening. Yeah. We got to end this segment, but when we come back, doctor, I want to talk about all the ways
Starting point is 00:14:41 that the endocrine system can fail us right when it's working you know nobody says anything right you're just a quote normal human being and you're a doctor specializing in occasions where this that system fails and so on yeah make sure we spend a whole segment on that this is star talk sports edition we'll be right back. We're back. StarTalk Sports Edition. An entire episode on the endocrine system. Your hormones long overdue for a topic of interest on this show.
Starting point is 00:15:26 Of course, I got Chuck and Gary. And our special guest today is Dr. Aniket Siddhaiyeh, who is an associate professor of medicine, Johns Hopkins University. Excuse me, the Johns Hopkins University, I think they prefer. Specializing in endocrinology, an expert in cystic fibrosis, and also diabetes, I think. Is that right? We'll learn more about that in a minute.
Starting point is 00:15:51 But who better to keep us on this journey? And so let me jump back in. So here we have a system of chemistry, basically. And Anika, I don't know if you know this, but some of my best friends are made of chemicals. Okay? Don't tell anybody. Some of my best friends are made of chemicals. Okay? Don't tell anybody. Some of my best friends actually do chemicals. Do chemicals. So, we spent the first segment describing the glory and the majesty of our endocrine system.
Starting point is 00:16:18 But I kept thinking about it from a systems engineering point of view, because when you launch something into space, everything has to work and you want to reduce the number of nodes of failure. And from your description, it sounds like there are multiple handoffs, chemical handoffs, from one location to another to another in order to regulate this body, which sounds to me like
Starting point is 00:16:42 we have high susceptibility to failure. So what can you tell us about what happens when our hormones go bad? Yeah. Yeah, you're right. There are different points of failure and there are many, many diseases, many common diseases that are due to disruptions to the endocrine system, probably the best known is diabetes. Oh, good. Yep. Yep. I mean, not good diabetes. That's bad, but good. You're going to talk about it. Yeah, you're going to understand it.
Starting point is 00:17:08 And diabetes simply means that there's a lot of sweet-tasting stuff flowing through your system. That's what diabetes mellitus means. And that means your blood glucose is too high, one of the sugars that we talked about. And really, the reason that happens is because people can't make enough insulin. And depending on what type of diabetes you have, the reason for that could be different. But the bottom line is there's just not enough insulin being made for your body's
Starting point is 00:17:37 needs. When there's not enough insulin, there's not that signal that tells the glucose, hey, go from the bloodstream into the muscle or into the fat, right? Or very interestingly, insulin also tells the liver to stop making sugar. So that's another way in which insulin acts. But all of these things you can see, if there's not enough insulin, the blood glucose stays high. And in the same way, there are many other hormonal systems. Another common one is the thyroid system.
Starting point is 00:18:05 We like the thyroid gland because you can actually feel it. It sits right on top of your trachea. And so it's a gland that you can actually feel, just like the other glands you can feel, which is your testes. So the thyroid, if the thyroid is damaged, you don't make enough thyroid hormone. And thyroid hormone, I like to describe as, it kind of tells every cell in the body how fast to run the furnace. So if you don't make enough thyroid hormone, you feel cold, you feel sluggish, you can't think quite as fast,
Starting point is 00:18:31 you get constipated, your skin becomes super dry. And so that's an example of when you don't make enough thyroid hormone. But you can also have the reverse. You can actually make too much of a hormone. And when you make too much thyroid hormone, for example, it's all the opposite. People feel hot, they sweat, they can't sleep. They actually feel tremulous or shaky even. Their hearts might race. And so that's an example of, you know,
Starting point is 00:18:55 when you have deficient or excess thyroid hormone. We mentioned gigantism in the previous segment, and that would be an example of having too much growth hormone. A real dangerous one is when you don't make enough cortisol because you need cortisol. It's like a stress response. Like when you're stressed, you need to make cortisol. And if you can't, then your blood pressure can't respond. Your immune system can't respond. And you can even die if you don't have enough cortisol. Is there something called hypercortisolism?
Starting point is 00:19:27 Yeah, yeah, yeah. That is in fact not enough cortisol. Hypocortisolism. So there's hypo and hyper? There's hypo and hyper, yeah. Hyper is too much. Hypo is not enough. You got it, yeah. And when you have hyper, it's a whole other set of problems.
Starting point is 00:19:42 And this is just a great example of how many different systems one hormone can affect. So if you take hypercortisolism, people can get diabetes. Their skin gets very fragile. Right. And they can bruise really easily. They can get fractures because it makes the bones thin
Starting point is 00:19:59 and you can't absorb calcium properly from your gut to help mineralize the bones. So lots of different systems get affected by one hormone. So on the subject of words, on the subject of words, you know, we have the word hyperbole, where you're going a little too far. We should invent the word hypobole, where you're not...
Starting point is 00:20:16 See, that just sounds like you can't say hyperbole. Hypobole? Hypobole. I say. I say that. Hypo-bly. Hypo-bly.
Starting point is 00:20:30 Never see here, boy. But hypo-bly would be like you're not exaggerating enough, right? You're underselling what you could be selling. I thought that's what English people do. Yeah, that's all. The understatement. We getting blamed again? A master of hypoboly.
Starting point is 00:20:46 I'm going to invent that word right now. That boy's about as sharp as a bowling ball. Always using hypoboly. So, Gary, take us back to sports here. That's the goal here. Before you do, because I just want to talk about what you just said, Doc. Yeah. So, all these things you just pointed out,
Starting point is 00:21:06 a lot of times I read these articles where it says that they're exacerbated by belly fat. So what does that have to do with anything? The fact that I'm carrying all this subcutaneous fat. Yeah, yeah. It turns out that fat is not some inert depot for storage of fat, you know, like our fat tissue. It is a very active organ almost.
Starting point is 00:21:30 And it makes inflammatory signals. And those inflammatory signals can go around your body and make your pancreas not work as well, make your muscle not take up glucose. They can make the blood vessels, you blood vessels a little reactive and make you more prone to cardiovascular disease. So the fat is secreting lots of signals that can be bad for you. Such as what puts you at risk for that other kind of diabetes, correct, in later life? That's right. If you're overweight, as I understood it.
Starting point is 00:22:01 Yep. As you get more fat, your body becomes more resistant to insulin. Now, you know, if your pancreas can still deal with that resistance, you don't get diabetes. But, you know, obviously there's a lot of people whose bodies can't react and they get diabetes as a result. Right, right. Okay. So, Gary, put us back on track here. So, where are we taking this? So, the body produces its own steroids.
Starting point is 00:22:25 Yes. Okay. But what happens if production starts to go up too far or go down too low? And if we wanted to introduce exterior steroids into the system, how do they interact? How do they play with the endocrine system?
Starting point is 00:22:44 So too much natural, too low, and then the introduction of exterior. Plus, we didn't hear officially yet what a steroid is. Yeah. If we can just give a minute on that, please. Sure, sure. So the steroid hormones are a class of hormones, and basically their backbone is cholesterol. So they all have cholesterol that is used to make these hormones.
Starting point is 00:23:06 So cortisol is a steroid hormone. And that is the stress hormone I just talked to you about. Testosterone is a steroid hormone. That's what's really responsible for males being males. And estradiol, which is the female sex steroid, is a steroid hormone. So it's a class of hormones. So when people say steroids, they could mean different things. But from, you know, we're talking about sports, I'm thinking you're talking about androgenic steroids. That is, right? And that's the ones you're talking about.
Starting point is 00:23:39 And the reason that people obviously have a lot of interest in these is because androgens have two different effects that are linked. They help males look like males, but they also have this anabolic effect on muscle. And people's muscles get bigger. And I think we all know what those folks look like. So, you know, interestingly, there are really rare, rare situations where somebody might make too much of a sex steroid. Tell me about it. Yeah.
Starting point is 00:24:18 But most of it, you know, unless you are, you know, a comedian on a talk show radio, you know, most of them are, they're taking those androgenic steroids from outside in one way or the other to help enhance performance. So do women also make testosterone? They do, but a very, very, very small amount. And how do they make it? So that's very interesting. Estradiol, which is the female sex steroid, is actually made from testosterone.
Starting point is 00:24:57 Oh, okay. Wow. Yeah, I was about 12. Oh, great. That's why when men get like really fat, they stop producing as much testosterone and they start growing boobs. No, they're called moobs, man boobs. Oh, that's right. Oh, yeah. So it turns out that you need an enzyme to convert that testosterone to estradiol.
Starting point is 00:25:16 And when you're more fat, then you have more of that enzyme. And so you make more estradiol for that reason. And so there's this balance between testosterone and estradiol that gets a little flipped. And once that happens, men can get breast developed. Everybody kind of defaults to the anabolic steroids. Yeah. But is there another way that you could get a boost, similar kind of boost in performance from the endocrine system without using this anabolic steroid? Instead of an external acceleration, why not something that prompts your body to do it on its own
Starting point is 00:25:56 or prompts your body to fall out of balance so that you get all muscle-like? Wait, Gary. So the doping rules, they specifically say you can't put a chemical from outside your body inside your body. But if I can do something inside my body that gives me all of the hormones,
Starting point is 00:26:17 of the steroids that I want and would have added to me, but I made it myself, is that then legal? There is a gray area because you, there's always a gray area. Yeah, of course. Kesa Samania, the female middle distance runner, has a higher natural level of testosterone.
Starting point is 00:26:35 They're going ape over this. They really are going nuts as to what to do or not to do. Yeah. And so, I mean, the other thing is, if you remember, we did a show on horses and horsepower. And then we were introduced to the fact that a horse's spleen can produce a rush of red blood cells, highly oxygenated red blood cells that help an initial burst of speed. In that racehorse moment, yeah.
Starting point is 00:27:00 And I'm just wondering, do we have similar facilities for ourselves to be able to do that? And we're not quite thinking that this could be something to use. Can I sit in a lotus position and increase my steroid level just by thinking it? All right. We have that power over body. Well, you know, I think that one of the things that I think we've been talking about is that these hormonal systems are acting in the background and we're not even aware that they're acting. Right. But there are, for example, like if you're stressed, you're not going to make that much testosterone. So any amount of stress is going to reduce your testosterone to the extent that that testosterone is important for maintaining your muscle mass, for example,
Starting point is 00:27:46 then that's going to affect your performance, for example. So, you know, you would be, I guess it would be an indirect way of making sure that you're making the optimal amount of, in this case, testosterone, but that would be true for potentially any other system. that would be true for potentially any other system. But in terms of sort of natural ways of boosting hormone production, so, for example, in the testosterone system, if, for example, you have reduced sexual activity,
Starting point is 00:28:25 you will then have slowly reduced production of testosterone. I guess that there's nothing that you could do to boost it that you'd have to have a control mechanism. And I think that's what we're lacking. So is there a natural way for me to boost testosterone but not let it be too high? So you need a knob attached to your body where your body doesn't shut down the high level that it's trained to do. But the body already has the knob. So the hypothalamic pituitary system is that knob. It doesn't let you make too much or too little.
Starting point is 00:28:55 So now what about gaining muscle? Because you always... Anybody who gains muscle, they're like the best way to increase your testosterone is to build muscle because your body says, I got to have more testosterone. Is that real or is that like something that these
Starting point is 00:29:11 companies do to get you to buy their little muscle making stuff? Yeah, the metabolic supplement company. Not investigated or approved by the FDA. Yes. I mean, you know, everybody's looking for this magic bullet to increase vitality, everybody's looking for this magic bullet to increase vitality.
Starting point is 00:29:26 Let's call it that for lack of a better word. And with that, there was this huge surge in even high school kids using anabolic steroids in the late 90s and 2000s to try and get bigger
Starting point is 00:29:41 for either sports or just even how they looked. But even prescriptions for testosterone have gone up from the late 90s. It was like $18 million worth and now it's like $18 billion worth. Oh my gosh. This is big, big business. Big business. In my opinion, you should use testosterone when someone has a bonafide organic reason
Starting point is 00:30:05 for not making testosterone. Like, for example, you had a pituitary tumor and it got taken out, but now you can't make the hormones that help you make testosterone. Okay.
Starting point is 00:30:14 I'm bombarded with commercials that say, at your age, you have lower testosterone here by this. Low T. Okay, wait, so if that's correct,
Starting point is 00:30:31 then you are supplementing the testosterone that you once had in your older age, right? Yeah, and this has been long known, this natural decline in testosterone that occurs in men at a relatively slow rate compared to women who go under menopause. And then their fall in estradiol is really very dramatic in the first year after menopause. But in men, it's this slow decline. And this is like a question, right? Like, this is just a natural thing that happens. Maybe there's a reason that this natural thing happens. Well, death is natural too, but that doesn't mean I have to embrace it.
Starting point is 00:31:01 Let's be clear about that. Yeah, I'm not racing towards it. Don't say, nature would have it that way and so should you. No. All right, so doctor, is it now, and you've talked about an amazing bump in the sale of testosterone as a prescription drug. Is it not just performance enhancement or muscle growth,
Starting point is 00:31:20 but people are using it as an anti-aging supplement? Yeah, and that's the major driver. And now it's become a fashionable trend. Let's put a pin in that until the third segment where I want to get more into what role these hormones are playing on what it is to be male or female in the first place. So, when StarTalk Sports Edition returns. We're back. StarTalk Sports Edition. I've got a professional endocrinologist in the house,
Starting point is 00:31:58 in the Zoom house, I guess we'll call it that. Dr. Aniket Siddhaiyeh telling us all about hormones and what we thought we knew and more stuff we didn't know we didn't know. So let me introduce this segment, this third and final segment by asking. You described categories of hormones that make us female, that make us male biologically. And now we are living in a world where trans athletes are striving to be recognized in sports in a category, in a sex category different from what they were assigned at birth. And so what does your community say and think about this? Because to the extent that I've thought about it, not that I have any expertise, but I like to think of myself as rational and thoughtful, that maybe we no longer contest athletes by sex, men against men, women against women. You have categories of hormones.
Starting point is 00:33:06 Hormones. How much female hormone do you have relative to male hormones? And those go into categories. They just compete in your hormone category. And who cares whether you're male or female at that point? So what... Yeah, I mean, that's a very... Like a hormonal weight class. Yes, basically.
Starting point is 00:33:22 Because I used to wrestle, we had 10 freaking weight classes, right? Because you know you can't pit people vastly different weights against each other and you still want to have an interesting contest. Right?
Starting point is 00:33:32 So I can look at the 118-pound wrestlers and it'll be just as interesting as the 250-pound wrestlers because they're matched. And why do we, any of us watch sports?
Starting point is 00:33:42 It's for the matchup. It's for the contest. It's for the matchup. It's for the contest. It's for the suspense of not knowing who is going to win. The most boring Super Bowl ever is a blowout. Okay?
Starting point is 00:33:53 The advertisers hate it when the team is winning, you know, 35 to 6. All right? Because no one watches the ads at that point. So...
Starting point is 00:34:02 Unless it's the Eagles. Okay. Chuck can't shake the Eagles. Damn. Mr. Philadelphia native. So, Dr. Sid Haye, what, tell me what's your reaction to what I said and how do you guys feel in general?
Starting point is 00:34:18 Yeah, I mean, I think, so at a very basic level, we know that testosterone can increase muscle mass. Of anybody. Of anybody. Of anybody. That's right. And power, the power output of that muscle. So I think that that's something that society has to contend with.
Starting point is 00:34:36 I think your suggestion is very interesting and creative. Like, could we have, just like you have age categories or weight categories. Yeah. Could you have a testosterone level category? And I think that my initial reaction was like, wow, that'd be a great solution. But then the problem is that the normal range of testosterone is extremely wide. And it goes from like 300 to like 1,200 in the units that we typically use to measure. And one person could be at 900 and
Starting point is 00:35:06 that's normal for them. And another person could be at 400 and that's normal for them. And so I don't think that we have the measurements sophisticated enough to kind of do that type of categorization because- Wait, wait, wait. But what you can, well, they take blood samples and urine samples every day during contests. So it's not like we don't have access to the chemistry of your body in very important athletic events. What I would ask is, if your natural testosterone is 800 and mine is 400, can I beat you in an event? If we are otherwise equal, but our testosterone levels are different, are we really otherwise equal?
Starting point is 00:35:50 Because, you know, what is professional sports? If not, I will do everything I can to gain an advantage over my competitors. I will train at high altitude. I will do breathing exercises. I will take all my vitamins. I will eat three squares. I will get a full night's sleep. I'll carbo load if I have to.
Starting point is 00:36:05 All of these are steps I'm taking to give me an advantage beyond my pure genetics. But if you're relating this just to a genderized aspect, then what I think the doctor is saying is inside of that normal parameter, you're going to find that men are pretty much going to be much larger than women. And even if you have a woman who has superior testosterone than her counterparts, she's probably still going to fall at the very low end of a man. Physically, in terms of the physicality. Wait, wait, wait, wait. I thought we were talking about hormones here. Because yes,
Starting point is 00:36:49 there are people who are bigger than other people, right? And so big people play football, all right? I'm not saying, oh my gosh, that's not fair. You had a genetic advantage because you're 300 pounds and I'm 150 pounds. No, they play football and I pay to watch them and they entertain me, right? So, we shouldn't walk into this saying, oh my gosh, some people have genetics that make them better at this. You know, Michael Phelps, does he have floppier feet and big feet that give him extra propeller blades when he's swimming? Okay. Are we saying disqualify him because of this? No. All right. Rather than just narrowly pinpoint testosterone,
Starting point is 00:37:27 doctor, are there other hormones that we could sort of bundle in together to then use as categorization through as well as weight and physicality? Wait, wait, wait, wait, wait. Gary, he didn't answer my question yet. Could chuck butt in. Wait, so here it is. We'll get to what you said, Gary,
Starting point is 00:37:43 because that's important. I'm simply asking, in a race of any kind, in a contest of any kind that involves strength, agility, the things that the testosterone, well, not agility, but strength, certainly, the testosterone and speed the testosterone may give you. If you checked everyone's testosterone level in a race, would it be ordered by how much testosterone they had, statistically? That's a good question. And I think the answer to that is no. If 800 is normal for you and 400 is normal for me, can I beat you at an event?
Starting point is 00:38:20 Yes. Because if I, well, okay. Right. So? There's the deal. So then? So no. So. So. There's the deal. Step so, then. So, no. So, what you're saying makes perfect sense.
Starting point is 00:38:27 If it's a hormonal weight class and you're able to categorize people by their testosterone number, yeah. Then you just test everybody and that's your weight class. That's a weight class. Right. Now, it's like, all right, how hard did I train? It's like, what is my strategy? Right, right. Like, all right, how hard did I train? It's like, what is my strategy? It's like all these other factors because we are equally matched
Starting point is 00:38:48 when it comes to our hormonal state. You're leveling the pain. I just want to indirect one thing that, you know, the testosterone, like I said, 400 could be normal for me. 800 could be normal for Neil, right? And then we're both normal. So that's where
Starting point is 00:39:05 I think your difficulty would be coming in coming of class. So, you know, how would you make a category? 200 to 400 is one category. No, it'll take some effort. Yes. Somebody's got to do some research on this. Why? I mean, why not? If that's the direction we're going. Yeah, and then you'll find people actually depressing their testosterone numbers so that they could be the superior athlete in the lower weight class. In the lower weight class. So are there other hormones, doctor, that we could, as I said,
Starting point is 00:39:37 bundle into the testosterone group to then even better equate the playing field and level it out. And by the way, what is the pipeline for that? It's kids in school wanting to be athletes, right? And how does your profession interact with the entire pipeline of people who need hormone therapy or endocrine therapy? Yeah, yeah.
Starting point is 00:40:05 Yeah, I guess there's sort of two questions there. One is, I think that because the purpose of the hormone system is to maintain balance, right? I think that's where this difficulty in finding this hormonal weight class will be. Because what is going to be balanced in me is not exactly balanced in you. So I think that people are always trying to develop prediction tools and putting in more pieces into that prediction tools. But I think it would be a big stretch to come up with some kind of
Starting point is 00:40:39 multi-hormonal categorization of people to level the playing field. In terms of where our field interacts, I think probably the biggest place is in persons who have diabetes. You mentioned that as like the number one endocrine failure of the body. Yeah. Yeah. I mean, certainly in endocrinologists in practice, we take care of patients with diabetes, I mean, certainly in endocrinologists in practice, we take care of patients with diabetes. It's the bulk of our practice. But in terms of kids who are participating in sports, those people who also have diabetes, it's a big challenge for them.
Starting point is 00:41:18 And, you know, really watching them overcome those hurdles is really, it's really kind of inspiring, to be very honest, that despite having this chronic illness, which requires a lot of work on their part to help manage themselves, they still take care of their sports. And we try and help do it so that they can do it in a safe way. And talking about diabetes, diabetes is a deficiency of insulin. And so we treat it by giving back insulin to the patient. The problem is that our ways of giving back insulin don't have the advantages that the body has. Remember, I told you about that link between how glucose stimulates insulin. Insulin goes up, and then once glucose comes down, insulin comes down. But when we ask a patient to take an injection of insulin, we can't take it back.
Starting point is 00:41:59 So even when the glucose comes down, that insulin is still there. So an athlete, so normally when people start working out, their glucose levels fall just a little bit and their insulin levels fall as well, normally speaking. I hadn't fully appreciated that because as my sugar levels go up and down, my body goes in and regulates it. But if I don't have the ability to regulate it and I put in the insulin, that's a fixed amount of insulin. And so that's why the diabetic people always have to manage their sugar intake in the way none of the rest of us do.
Starting point is 00:42:34 That's interesting. It's an amazing amount of work that patients with diabetes do. Is there a technological solution to this? Yeah, I'm glad you brought it up. There's both technological and biological solutions. You know, in our field, we're just super excited about both, potentially. So we have continuous glucose monitors.
Starting point is 00:42:55 So these are devices that people wear on their body, and they have little catheters that dangle just beneath the skin, and they're sampling that fluid every five minutes and measuring the glucose. It turns out that fluid's glucose mirrors the blood's glucose pretty closely. And the device companies have come up with now this glucose information can be transmitted to an insulin pump. Right. And the insulin pump is delivering insulin
Starting point is 00:43:17 in sort of little bits at a time. And now these insulin pumps can adjust the amount of insulin that they deliver based on the glucose information. Just as your body would have done, yeah. It's like a pacemaker for insulin. Yeah, very good, Chuck. You micro-dose, Rod, because I used to have a teammate of mine
Starting point is 00:43:36 back in the day, Gary Mabbitt, who was an exceptional footballer and went to the very, very top of the game in English football. He would have to go away, pop a needle in his hip, jump all this insulin into his body. But now you're saying this can be kind of micro-dosed and regulated so you've not got too much in your system after your glucose levels have dropped. That's right. So now that these devices are really just coming on the market in a big way in the last two, three years, people are going to learn to use them more effectively. And there are strategies that people who study exercise and type 1 diabetes, that we tell
Starting point is 00:44:13 patients so that they can manage their glucose better. And that's important, both for safety. You obviously don't want to have a low glucose in the middle of a workout or middle of a game, but also performance. You know, when people's glucoses are riding high for a long period of time, guess what? That glucose in the bloodstream is not doing their muscle any benefit. So now we're really optimistic. Because it's in their bloodstream.
Starting point is 00:44:36 That's right. And not in their muscle to help them. So these devices, I think, are going to make it easier for, you know, people and kids to participate in sports in a more safe way. Then, of course, there's these biological solutions. It was in the news recently about a stem cell-based treatment, which is basically a little pancreas in a capsule, let's call it that, where people get injected with these cells. These cells can respond to glucose in the bloodstream the way the body would have. and these cells can respond to glucose in the bloodstream the way the body would have. And of course, maybe that is going to take a few years
Starting point is 00:45:08 to come to fruition for a large scale, but these trials are ongoing in humans right now. So- This is all very hopeful. And you're like, we all agreed you were young. And so you're going to be in this and you're going to watch this field burgeon in so many ways. This is very fascinating.
Starting point is 00:45:28 Before we close, I want to ask, I guess, what would be an ethical question, right? We're so busy defining what is normal in this world. You know, are you the normal height, the normal weight? Are your organs functioning the way the average organ should? And then you get some variation in that. And the urge is to say that's abnormal. There's an entire TV show on cable that follows a family with dwarfism. I think that's what it's called.
Starting point is 00:46:00 But they're called little people, right? With the shortened long bones. Colloquially, they're called little people, right? With the shortened long bones, colloquially, little people. And everything in their life is made little to accommodate their lives. And they're getting along just fine. So who are you as an endocrinologist to say that they are abnormal? I think that's a good question. Yeah. Anytime, you know, a lot of pediatric endocrinologists obviously are often asked to see people who have, we say, short stature is the way we say it. And, you know, normal and abnormal are usually defined based on some population-based data. And to be homosexual was considered abnormal in the psychiatric journals until 1987, last I remembered
Starting point is 00:46:47 reading about this. And so, it's clearly a cultural force that needs to operate on top of this, on top of whatever statistics you're finding in the population. Yeah. And I think the better way to think about all of this always is this healthy or unhealthy? Is this stature that is lower than the population norms, is it healthy or unhealthy? And for example, the story that you just described, it is not unhealthy, evidently. It doesn't have any negative health consequences. We as doctors, we want to make sure that, okay, does these people who maybe have short stature, are they at increased risk of fracture 20,
Starting point is 00:47:25 30 years down the road? Or are they increased risk of heart disease 20, 30 years down the road? Or maybe not. Maybe they're actually protected. So we always would then want to take this, what we're seeing and seeing, is there something unhealthier or maybe some advantage to that? And I think you're right. I think we have to be very careful about the labels we put on people. And I think our field, as all fields in medicine, are becoming more sensitive to that. Okay. All right. So there's some hope.
Starting point is 00:48:00 But this is in the broader subject of inclusion, really, is what category that would come under. All right. We got to land that plane. All right. This has been StarTalk Sports Edition, all about endocrinology. Neil deGrasse Tyson here, your personal astrophysicist.

There aren't comments yet for this episode. Click on any sentence in the transcript to leave a comment.